fossil hominin
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bingjue Li ◽  
Shengmin Zhou ◽  
Andrew Peter Murray ◽  
Gérard Subsol

AbstractMorphometrics is a multivariate technique for shape analysis widely employed in biological, medical, and paleoanthropological applications. Commonly used morphometric methods require analyzing a huge amount of variables for problems involving a large number of specimens or complex shapes. Moreover, the analysis results are sometimes difficult to interpret and assess. This paper presents a methodology to synthesize a shape-changing chain for 2D or 3D curve fitting and to employ the chain parameters in stepwise discriminant analysis (DA). The shape-changing chain is comprised of three types of segments, including rigid segments that have fixed length and shape, scalable segments with a fixed shape, and extendible segments with constant curvature and torsion. Three examples are presented, including 2D mandible profiles of fossil hominin, 2D leaf outlines, and 3D suture curves on infant skulls. The results demonstrate that the shape-changing chain has several advantages over common morphometric methods. Specifically, it can be applied to a wide range of 2D or 3D profiles, including open or closed curves, and smooth or serrated curves. Additionally, the segmentation of profiles is a flexible and automatic protocol that can consider both biological and geometric features, the number of variables obtained from the fitting results for statistical analysis is modest, and the chain parameters that characterize the profiles can have physical meaning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ioanna Anastopoulou ◽  
Fotios Alexandros Karakostis ◽  
Katerina Harvati ◽  
Konstantinos Moraitis

AbstractCommingled remains describes the situation of intermixed skeletal elements, an extremely common occurrence in contemporary forensic cases, archaeological mass graves, as well as fossil hominin assemblages. Given that reliable identification is typically impossible for commingled contexts, a plethora of previous studies has focused on the development of refined methods for reassociating the bones of each individual skeleton. Here, a novel virtual approach for quantifying the degree of three-dimensional shape compatibility between two adjoining bone articular surfaces is put forth. Additionally, the integrability of this method with traditional osteometric techniques is evaluated. We focus on the paradigm of the hip joint, whose articulating bone elements (the femur and the innominate bone) are crucial for reconstructing the biological profile of unidentified human remains. The results demonstrate that this new semi-automated methodology is highly accurate both for large commingled assemblages (such as those resulting from mass disasters or burials) as well as smaller-scale contexts (such as those resulting from secondary burials).


2021 ◽  
Vol 11 (5) ◽  
pp. 20200075
Author(s):  
Kevin G. Hatala ◽  
Stephen M. Gatesy ◽  
Peter L. Falkingham

The emergence of bipedalism had profound effects on human evolutionary history, but the evolution of locomotor patterns within the hominin clade remains poorly understood. Fossil tracks record in vivo behaviours of extinct hominins, and they offer great potential to reveal locomotor patterns at various times and places across the human fossil record. However, there is no consensus on how to interpret anatomical or biomechanical patterns from tracks due to limited knowledge of the complex foot–substrate interactions through which they are produced. Here, we implement engineering-based methods to understand human track formation with the ultimate goal of unlocking invaluable information on hominin locomotion from fossil tracks. We first developed biplanar X-ray and three-dimensional animation techniques that permit visualization of subsurface foot motion as tracks are produced, and that allow for direct comparisons of foot kinematics to final track morphology. We then applied the discrete element method to accurately simulate the process of human track formation, allowing for direct study of human track ontogeny. This window lets us observe how specific anatomical and/or kinematic variables shape human track morphology, and it offers a new avenue for robust hypothesis testing in order to infer patterns of foot anatomy and motion from fossil hominin tracks.


2021 ◽  
Vol 117 (3/4) ◽  
Author(s):  
Ian Towle ◽  
Joel D. Irish ◽  
Isabelle De Groote ◽  
Christianne Fernée ◽  
Carolina Loch

Once considered rare in fossil hominins, caries has recently been reported in several hominin species, requiring a new assessment of this condition during human evolution. Caries prevalence and location on the teeth of South African fossil hominins were observed and compared with published data from other hominin samples. Teeth were viewed macroscopically, with lesion position and severity noted and described. For all South African fossil hominin specimens studied to date, a total of 10 carious teeth (14 lesions), including 4 described for the first time here, have been observed. These carious teeth were found in a minimum of seven individuals, including five Paranthropus robustus, one early Homo, and one Homo naledi. All 14 lesions affected posterior teeth. The results suggest cariogenic biofilms and foods may have been present in the oral environment of a wide variety of hominins. Caries prevalence in studied fossil hominins is similar to those in pre-agricultural human groups, in which 1–5% of teeth are typically affected.


2021 ◽  
Author(s):  
Ian Towle ◽  
Joel D. Irish ◽  
Carolina Loch

AbstractThe paranthropines, including Paranthropus boisei and Paranthropus robustus, have often been considered hard-food specialists. The large post-canine teeth, thick enamel, and robust craniofacial features are often suggested to have evolved to cope with habitual mastication of hard foods. Yet, direct evidence for Paranthropus feeding behaviour often challenges these morphological interpretations. The main exception being antemortem tooth chipping which is still regularly used as evidence of habitual mastication of hard foods in this genus. In this study, data were compiled from the literature for six hominin species (including P. boisei and P. robustus) and 17 extant primate species, to analyse Paranthropus chipping patterns in a broad comparative framework. Severity of fractures, position on the dentition, and overall prevalence were compared among species. The results indicate that both Paranthropus species had a lower prevalence of tooth fractures compared to other fossil hominin species (P. boisei: 4%; P. robustus: 11%; Homo naledi: 37%; Australopithecus africanus: 17%; Homo neanderthalensis: 45%; Epipalaeolithic Homo sapiens: 29%); instead, their frequencies are similar to apes that masticate hard items in a non-regular frequency, including chimpanzees, gibbons, and gorillas (4%, 7% and 9% respectively). The prevalence is several times lower than in extant primates known to habitually consume hard items, such as sakis, mandrills, and sooty mangabeys (ranging from 28% to 48%). Comparative chipping analysis suggests that both Paranthropus species were unlikely habitual hard object eaters, at least compared to living durophage analogues.


2021 ◽  
Vol 151 ◽  
pp. 102923
Author(s):  
Ian Towle ◽  
Carolina Loch ◽  
Joel D. Irish ◽  
Alessio Veneziano ◽  
Tsuyoshi Ito

2020 ◽  
Vol 4 (7) ◽  
pp. 911-918 ◽  
Author(s):  
Christopher J. Dunmore ◽  
Matthew M. Skinner ◽  
Ameline Bardo ◽  
Lee R. Berger ◽  
Jean-Jacques Hublin ◽  
...  
Keyword(s):  

Author(s):  
Tracy L. Kivell ◽  
Kelly R. Ostrofsky ◽  
Brian G. Richmond ◽  
Michelle S.M. Drapeau

This chapter presents description and analysis of the metacarpals and manual phalanges from Sterkfontein. Although the morphology is generally similar across the sample where there are duplicates of the same element, there are differences in size that are quite remarkable within the context of all South African hominins. Some very large specimens suggest the presence of individuals at Sterkfontein with much larger hands, and presumably larger body size, at Sterkfontein than those of A. sediba MH2, H. naledi and the Swartkrans hominins. Australopithecus africanus had human-like proportions, but this may be plesiomorphic within the hominoid clade. The potentially less mobile trapezium-Mc1 joint, absence of a fully developed palmar pulp on the distal thumb, more limited pronation of the index finger, and potentially more wedge-shaped trapezoid inferred from the preserved external morphology, is consistent with lower manipulative loading of the thumb than is typical of later Homo. As for other forelimb elements, moderately curved manual phalanges suggests a greater reliance on forelimb-dominated locomotor behaviors and perhaps selection for more frequent use of an arboreal environment in A. africanus than is found in A. afarensis. Thus, within this broader context, the Sterkfontein fossil hominin remains are not unusual. The Sterkfontein hand fossils suggest an overall manipulative and locomotor loading regime that was more similar to that of other South African australopiths and distinct from that of later Homo, but more refined functional interpretations require additional fossil evidence, particularly from associated hand skeletons


Sign in / Sign up

Export Citation Format

Share Document