scholarly journals An invasive plant species enhances biodiversity in overgrazed pastures but inhibits its recovery in protected areas

2020 ◽  
Author(s):  
Gianalberto Losapio ◽  
Consuelo M. De Moraes ◽  
Rodolfo Dirzo ◽  
Lilian L. Dutoit ◽  
Thomas Tscheulin ◽  
...  

AbstractAnthropogenic environmental change exposes biological communities to concurrent stressors (e.g., changes in climate and land-use, overexploitation, biotic invasions) that frequently persist over prolonged periods. Predicting and mitigating the consequences of human action on nature therefore requires understanding how exposure to multiple interacting stressors alters biological communities over relevant (e.g., multi-decadal) time periods. Here, we explore the effects of overgrazing and plant species invasion on plant community diversity and ecosystem functioning (productivity), as well as the patterns of recovery of plant communities following cessation of grazing pressure. In a Mediterranean pasture system, we utilized a “natural” experiment involving long-term exclusion of grazers (for 15-25 years in parks) and also conducted short-term grazing-exclusion and invasive species removal experiments. Our results reveal that invasion by a grazing-resistant plant (prickly burnet) has net positive effects on plant diversity under overgrazing conditions but inhibits the recovery of biodiversity once grazing ceases. Furthermore, while the diversity-productivity relationship was found to be positive in pastures, the interactive effects of overgrazing and species invasion appear to disrupt ecosystem functioning and inhibit the recovery of pasture productivity. These findings highlight the potential for prolonged exposure to anthropogenic stressors, such as overgrazing, to cause potentially-irreversible changes in biological communities that, in turn, compromise ecosystem functioning and resilience. In such cases, sustainable ecosystem management may require direct intervention to boost biodiversity resilience against centennial overgrazing.

2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>


2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>


2018 ◽  
Author(s):  
Viktor R. Tóth ◽  
Paolo Villa ◽  
Monica Pinardi ◽  
Mariano Bresciani

AbstractThe relationship between invasive plant functional traits and their invasiveness is still the subject of scientific investigation, and the backgrounds of transition from non-native to invasive species in ecosystems are therefore poorly understood. Furthermore, our current knowledge on species invasiveness is heavily biased toward terrestrial species; we know much less about the influence of allochthonous plant traits on their invasiveness in aquatic ecosystems. We studied physiological and ecological traits of two introduced and three native macrophyte species in the Mantua lakes system (northern Italy). We compared their photophysiology, pigment content, leaf reflectance, and phenology in order to assess how the invasive Nelumbo nucifera and Ludwigia hexapetala perform compared to native species, Nuphar lutea, Nymphaea alba, and Trapa natans. We found L. hexapetala to have higher photosynthetic efficiency and able to tolerate higher light intensities than N. nucifera and the native species especially at extreme weather conditions (prolonged exposure to high light and higher temperatures). Chlorophyll a and b, and carotenoid contents of both allochthonous species was substantially higher than that of the native plants suggesting adaptive response to the ecosystem of Mantua lakes system. Higher variability of recorded data in invasive species also was observed. These observations suggest advanced photosynthetic efficiency of the invasive species, especially L. hexapetala, resulting in faster growth rates and higher productivity. This was supported by the evaluation of seasonal dynamics mapped from satellite remote sensing data. This study provides empirical evidence for the relationship between specific plant physiological traits and invasiveness of aquatic plant species, highlighting the importance of trait studies in predicting ecosystem-level impacts of invasive plant species.


Ecology ◽  
2010 ◽  
Vol 91 (3) ◽  
pp. 767-781 ◽  
Author(s):  
Paul Kardol ◽  
Melissa A. Cregger ◽  
Courtney E. Campany ◽  
Aimee T. Classen

2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2021 ◽  
Vol 167 ◽  
pp. 113476
Author(s):  
Ricardo Almeida ◽  
Fernando Cisneros ◽  
Cátia V.T. Mendes ◽  
Maria Graça V.S. Carvalho ◽  
Maria G. Rasteiro ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76432 ◽  
Author(s):  
Marco A. Molina-Montenegro ◽  
Cristian Salgado-Luarte ◽  
Rómulo Oses ◽  
Cristian Torres-Díaz

Sign in / Sign up

Export Citation Format

Share Document