scholarly journals Interactive effects of climate change and plant invasion on alpine biodiversity and ecosystem dynamics

2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>

2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>


2017 ◽  
Vol 6 (4) ◽  
pp. 150-157
Author(s):  
N. A. Ghayal ◽  
C. P. Hase

The invasive plant species hamper crops, human activities and become part of dynamic ecosystems, which grow in varied habitats and harsh ecological conditions and often invade the new ecosystems. The campus of Pune University is highly rich in phytodiversity of native and invasive weeds, which interact with each other. The invasive weeds like Cassia uniflora Mill. non Spreng, Alternanthera tenella Colla., Synedrella nodiflora (L) Gaertn, S. vialis Gray and native weed species like Achyranthes are showing dominance in the campus. The GPS mapping indicated that C. uniflora, S. nodiflora, . tenella, Blainvillea acmella, Euphorbia geniculata, Triumfetta rhomboidea and C. obtusifolia were dominant and occasionally forming pure stands in the campus reducing the phytodiversity of natives by substitution. The results on weed-weed interactions indicated that major associations were between Cassia and Achyranthes, Cassia and Bidens . Synedrella population was forming monothickets. The studies on weed-weed associations and interactions at all the sites indicated that native plants were substituted by the encroachment of invasive weeds due to negative interactions. The negative influence of Cassia and Synedrella was prominent through out the campus. The strong positive and negative associations of native and alien weeds in the university campus predicted changing Phytodiversity and ecosystem dynamics. The aggressive nature and invasiveness of C.uniflora and S.nodiflora was confirmed by their respective abundance such as 25.83 and 24.80 as compared to native weeds like Achyranthes (12.93). The investigation clearly proved the declining phytodiversityof native plant species in the university campus, which has perturbed the ecological balance through the release of allelochemicals / ecochemicals in the habitat. 


2009 ◽  
Vol 39 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Jeffrey S. Dukes ◽  
Jennifer Pontius ◽  
David Orwig ◽  
Jeffrey R. Garnas ◽  
Vikki L. Rodgers ◽  
...  

Climate models project that by 2100, the northeastern US and eastern Canada will warm by approximately 3–5 °C, with increased winter precipitation. These changes will affect trees directly and also indirectly through effects on “nuisance” species, such as insect pests, pathogens, and invasive plants. We review how basic ecological principles can be used to predict nuisance species’ responses to climate change and how this is likely to impact northeastern forests. We then examine in detail the potential responses of two pest species (hemlock woolly adelgid ( Adelges tsugae Annand) and forest tent caterpillar ( Malacosoma disstria Hubner)), two pathogens (armillaria root rot ( Armillaria spp.) and beech bark disease ( Cryptococcus fagisuga Lind. + Neonectria spp.)), and two invasive plant species (glossy buckthorn ( Frangula alnus Mill.) and oriental bittersweet ( Celastrus orbiculatus Thunb.)). Several of these species are likely to have stronger or more widespread effects on forest composition and structure under the projected climate. However, uncertainty pervades our predictions because we lack adequate data on the species and because some species depend on complex, incompletely understood, unstable relationships. While targeted research will increase our confidence in making predictions, some uncertainty will always persist. Therefore, we encourage policies that allow for this uncertainty by considering a wide range of possible scenarios.


The Condor ◽  
2021 ◽  
Author(s):  
Douglas W Tallamy ◽  
W Gregory Shriver

Abstract A flurry of recently published studies indicates that both insects and birds have experienced wide-scale population declines in the last several decades. Curiously, whether insect and bird declines are causally linked has received little empirical attention. Here, we hypothesize that insect declines are an important factor contributing to the decline of insectivorous birds. We further suggest that insect populations essential to insectivorous birds decline whenever non-native lumber, ornamental, or invasive plant species replace native plant communities. We support our hypothesis by reviewing studies that show (1) due to host plant specialization, insect herbivores typically do poorly on non-native plants; (2) birds are often food limited; (3) populations of insectivorous bird species fluctuate with the supply of essential insect prey; (4) not all arthropod prey support bird reproduction equally well; and (5) terrestrial birds for which insects are an essential source of food have declined by 2.9 billion individuals over the last 50 years, while terrestrial birds that do not depend on insects during their life history have gained by 26.2 million individuals, a 111-fold difference. Understanding the consequences of insect declines, particularly as they affect charismatic animals like birds, may motivate land managers, homeowners, and restoration ecologists to take actions that reverse these declines by favoring the native plant species that support insect herbivores most productively.


Zootaxa ◽  
2011 ◽  
Vol 2796 (1) ◽  
pp. 67
Author(s):  
NICHOLAS A. MARTIN ◽  
ZHI-QIANG ZHANG

Nameriophyes sapidae Xue & Zhang (Acari: Eriophyidae) was found on transplanted nikau palms, Rhopalostylis sapida (H. Wendl. & Drude) in Auckland, New Zealand and described as a new species (Xue & Zhang 2008). Although R. sapida is a native plant species, it was not known if this mite species was indigenous or adventive because it was collected only from transplanted palms in unnatural gardens in Auckland. A survey was undertaken of R. sapida and the Kermadec Island palm, Rhopalostylis baueri (Hook. f.) Wendl. & Drude in the northern part of the North Island and Chatham Island.


1998 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Max Abensperg-Traun ◽  
Lyn Atkins ◽  
Richard Hobbs ◽  
Dion Steven

Exotic plants are a major threat to native plant diversity in Australia yet a generic model of the invasion of Australian ecosystems by exotic species is lacking because invasion levels differ with vegetation/soil type and environmental conditions. This study compared relative differences in exotic species invasion (percent cover, spp. richness) and the species richness of herbaceous native plants in two structurally very similar vegetation types, Gimlet Eucalyptus salubris and Wandoo E. capillosa woodlands in the Western Australian wheatbelt. For each woodland type, plant variables were measured for relatively undisturbed woodlands, woodlands with >30 years of livestock grazing history, and woodlands in road-verges. Grazed and road-verge Gimlet and Wandoo woodlands had significantly higher cover of exotic species, and lower species richness of native plants, compared with undisturbed Gimlet and Wandoo. Exotic plant invasion was significantly greater in Gimlet woodlands for both grazed (mean 78% cover) and road-verge sites (mean 42% cover) than in comparable sites in Wandoo woodlands (grazed sites 25% cover, road-verge sites 19% cover). There was no significant difference in the species richness of exotic plants between Wandoo and Gimlet sites for any of the three situations. Mean site richness of native plants was not significantly different between undisturbed Wandoo and undisturbed Gimlet woodlands. Undisturbed woodlands were significantly richer in plant species than grazed and road-verge woodlands for both woodland types. Grazed and road-verge Wandoo sites were significantly richer in plant species than communities in grazed and road-verge Gimlet. The percent cover of exotics was negatively correlated with total (native) plant species richness for both woodland types (Wandoo r = ?0.70, Gimlet r = ?0.87). Of the total native species recorded in undisturbed Gimlet, 83% and 61% were not recorded in grazed and road-verge Gimlet, respectively. This compared with 40% and 33% for grazed and road-verge Wandoo, respectively. Grazed Wandoo and grazed Gimlet sites had significantly fewer native plant species than did road-verge Wandoo and road-verge Gimlet sites. Ecosystem implications of differential invasions by exotic species, and the effects of grazing (disturbance) and other factors influencing susceptibility to exotic plant invasion (landscape, competition and allelopathy) on native species decline are discussed. Exclusion of livestock and adequate methods of control and prevention of further invasions by exotic plants are essential requirements for the conservation of these woodland systems.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Ian Sexton ◽  
Philip Turk ◽  
Lindsay Ringer ◽  
Cynthia S. Brown

The accumulation of live and dead trees and other vegetation in forests across the western United States is producing larger and more severe wildfires. To decrease wildfire severity and increase forest resilience, foresters regularly remove excess fuel by burning woody material in piles. This common practice could also cause persistent ecosystem changes such as the alteration of soil physical and chemical properties due to extreme soil heating, which can favor invasion by non-native plant species. The abundance and species richness of native plant communities may also remain depressed for many years after burning has removed vegetation and diminished propagules in the soil. This adds to the vulnerability of burned areas to the colonization and dominance by invasive species. Research into the use of revegetation techniques following pile burning to suppress invasion is limited. Studies conducted in various woodland types that investigated revegetation of pile burn scars have met with varying success. To assess the effectiveness of restoring pile burn scars in Rocky Mountain National Park, Colorado, we monitored vegetation in 26 scars, each about 5 m in diameter, the growing season after burning. Later that summer, we selected 14 scars for restoration that included soil scarification, seed addition, and pine duff mulch cover. We monitored the scars for four years, pre-restoration, and three years post-restoration and found that the cover of seeded species exceeded the surrounding unburned areas and unseeded controls. The restoration seeding suppressed cover of non-native species as well as native species that were not seeded during restoration. Our results suggest that restoration of pile burn scars could be a useful tool to retard the establishment of invasive plant species when there are pre-existing infestations near scars. However, this must be weighed against the simultaneous suppression of native species recruitment. Monitoring for periods more than three years will help us understand how long the suppression of native and non-native species by restoration species may persist.


AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Betsy von Holle ◽  
Sören E Weber ◽  
David M Nickerson

Abstract Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant–microbe interactions. We evaluated the effects of site, plant–soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora’s invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
塞依丁·海米提 SAYIT Hamit ◽  
努尔巴依·阿布都沙力克 NURBAY Abdushalih ◽  
许仲林 XU Zhonglin ◽  
阿尔曼·解思斯 ARMAN Jiesisi ◽  
邵华 SHAO Hua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document