PROFILING OF Y1 CELLS TREATED WITH FGF-2 REVEALS PARALLELS WITH ONCOGENE-INDUCED SENESCENCE

2020 ◽  
Author(s):  
Peder J. Lund ◽  
Mariana Lopes ◽  
Simone Sidoli ◽  
Mariel Coradin ◽  
Francisca Nathália de Luna Vitorino ◽  
...  

ABSTRACTParadoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Along these lines, Y1 cells, which carry an amplification of Ras, become senescent after treatment with the mitogen FGF-2. To understand how FGF-2 promotes senescence, we profiled the epigenome, transcriptome, proteome, and phospho-proteome of Y1 cells stimulated with FGF-2. FGF-2 caused delayed acetylation of histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. In contrast, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. Altogether, the response of Y1 cells to FGF-2 is consistent with oncogene-induced senescence. We propose that Y1 cells enter senescence due to deficient cyclin expression and high levels of p21, which may stem from DNA damage or TGFb signaling.

PLoS Genetics ◽  
2012 ◽  
Vol 8 (11) ◽  
pp. e1003059 ◽  
Author(s):  
Sandra C. P. De Castro ◽  
Ashraf Malhas ◽  
Kit-Yi Leung ◽  
Peter Gustavsson ◽  
David J. Vaux ◽  
...  

2007 ◽  
Vol 27 (23) ◽  
pp. 8364-8373 ◽  
Author(s):  
J. Veis ◽  
H. Klug ◽  
M. Koranda ◽  
G. Ammerer

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the periodic expression of the G2/M-specific gene CLB2 depends on a DNA binding complex that mediates its repression during G1 and activation from the S phase to the exit of mitosis. The switch from low to high expression levels depends on the transcriptional activator Ndd1. We show that the inactivation of the Sin3 histone deacetylase complex bypasses the essential role of Ndd1 in cell cycle progression. Sin3 and its catalytic subunit Rpd3 associate with the CLB2 promoter during the G1 phase of the cell cycle. Both proteins dissociate from the promoter at the onset of the S phase and reassociate during G2 phase. Sin3 removal coincides with a transient increase in histone H4 acetylation followed by the expulsion of at least one nucleosome from the promoter region. Whereas the first step depends on Cdc28/Cln1 activity, Ndd1 function is required for the second step. Since the removal of Sin3 is independent of Ndd1 recruitment and Cdc28/Clb activity it represents a unique regulatory step which is distinct from transcriptional activation.


1991 ◽  
Vol 11 (8) ◽  
pp. 4111-4120
Author(s):  
B A Morgan ◽  
B A Mittman ◽  
M M Smith

The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Wenqing Wang ◽  
Andrew Devilbiss ◽  
Thomas Mathews ◽  
Martin Arreola ◽  
Misty Martin ◽  
...  

Energy deficiency and redox stress are hallmarks of mitochondrial pathology. Reductive stress is marked by an accumulation of reducing species and can arise from defects in the electron transport chain (ETC) that prevent NAD+ regeneration from NADH. Reticular Dysgenesis (RD) is a particularly grave form of severe combined immunodeficiency (SCID), characterized by maturation arrest of both myeloid and lymphoid lineages. Unlike other forms of SCID, RD is a mitochondriopathy caused by biallelic mutations in the mitochondrial enzyme adenylate kinase 2 (AK2). AK2 catalyzes the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP), and maintains ADP availability for ATP synthase. We hypothesize that AK2 deficiency leads to decreased ETC activities and defective NAD+ regeneration. Emerging evidence suggests that the development of hematopoietic stem and progenitor cells (HSPCs) is intricately intertwined with various aspects of mitochondrial function. Investigating the cellular and molecular consequences of AK2 deficiency during myelopoiesis provides fundamental insight into the pathology of many mitochondrial disorders. Methods: To recapitulate RD myeloid maturation defects, we developed an AK2 biallelic knock out model in human HSPCs using CRISPR gene editing. HSPCs were edited at the AK2 locus, and cells with biallelic AK2 knock out were enriched using homologous recombination-mediated dual reporters. HSPCs edited at the safe harbor locus AAVS1 were used as a control. When differentiated along the myeloid lineage in vitro, AK2-/- HSPCs showed significantly decreased proliferation, lower commitment to the granulocytic lineage, and maturation arrest at the promyelocyte stage, mimicking the presentation of RD patients. To dissect differentiation stage specific changes in metabolism, metabolomics analysis (LC-MS/MS), metabolic flux analysis (Seahorse assays) and RNA-seq were performed on FACS sorted populations of promyelocytes (PMs), metamyelocytes (MCs) and neutrophils (NPs). Additionally, mitochondrial membrane potential and ribosomal RNA (rRNA) content were quantified using TMRM and pyronin Y staining. Results: AK2-/- MCs and NPs showed higher AMP levels, and increased AMP/ADP and AMP/ATP ratios, in line with AK2's function to regenerate ADP from AMP. Mitochondrial oxygen consumption rate decreased, and mitochondrial membrane potential increased in AK2-/- MCs and NPs, indicating defective ETC function and ATP synthesis. Consistent with these results, TCA cycle metabolites were downregulated while pathways that fuel the TCA cycle, i.e. glycolysis and fatty acid oxidation, were upregulated. Interestingly, we observed a significant decrease in NAD+ levels, and an increase in NADH/NAD+ and GSH/GSSG ratios in AK2-/- MCs and NPs, indicative of reductive stress. These results suggest that AK2 deficiency compromises mitochondrial respiration, leading to NAD+ depletion and reductive stress in later stages of myeloid development. Defective mitochondrial respiration has been shown to impair NAD+-dependent aspartate and purine biosynthesis. In AK2-/- MCs and NPs, we observed a profound aspartate depletion and build-up of the purine precursor inosine monophosphate (IMP). As a building block for DNA and RNA, purine deficiency is known to block cell proliferation. Genes in cell cycle and ribosomal biogenesis pathways were down regulated in AK2-/- MCs and NPs. In addition, rRNA content was significantly decreased. These data raise the possibility that purine deficiency in AK2-/- HSPCs compromises nucleotide/protein synthesis along with cell cycle progression. Conclusions: Using an AK2 biallelic knock out HSPC model for RD, we have shown that defective mitochondrial respiration in AK2-/- HSPCs leads to reductive stress, NAD+ and purine depletion resulting in compromised nucleotide/protein synthesis and impaired cell cycle progression. Notably, these defects worsen as myeloid maturation progresses, possibly reflecting the increasing mitochondrial metabolic demand. We are currently exploring whether correcting the NADH/NAD+ ratio in AK2-/- HSPCs improves purine synthesis and restores myelopoiesis. Understanding how redox metabolism governs HSPC differentiation will not only allow us to delineate metabolic changes during development, but enable us to develop novel therapies for RD and other mitochondrial disorders. Disclosures Dever: Integral Medicines: Current Employment.


2016 ◽  
Vol 21 (8) ◽  
pp. 786-794 ◽  
Author(s):  
John M. Strelow ◽  
Min Xiao ◽  
Rachel N. Cavitt ◽  
Nathan C. Fite ◽  
Brandon J. Margolis ◽  
...  

SETD8 is the methyltransferase responsible for monomethylation of lysine at position 20 of the N-terminus of histone H4 (H4K20). This activity has been implicated in both DNA damage and cell cycle progression. Existing biochemical assays have utilized truncated enzymes containing the SET domain of SETD8 and peptide substrates. In this report, we present the development of a mechanistically balanced biochemical assay using full-length SETD8 and a recombinant nucleosome substrate. This improves the binding of SAM, SAH, and sinefungin by up to 10,000-fold. A small collection of inhibitors structurally related to SAM were screened and 40 compounds were identified that only inhibit SETD8 when a nucleosome substrate is used.


1991 ◽  
Vol 11 (8) ◽  
pp. 4111-4120 ◽  
Author(s):  
B A Morgan ◽  
B A Mittman ◽  
M M Smith

The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.


2008 ◽  
Vol 23 (3) ◽  
pp. 957-966 ◽  
Author(s):  
Roberta Fiume ◽  
Giulia Ramazzotti ◽  
Gabriella Teti ◽  
Francesca Chiarini ◽  
Irene Faenza ◽  
...  

Nature ◽  
2010 ◽  
Vol 466 (7305) ◽  
pp. 508-512 ◽  
Author(s):  
Wen Liu ◽  
Bogdan Tanasa ◽  
Oksana V. Tyurina ◽  
Tian Yuan Zhou ◽  
Reto Gassmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document