normal cell cycle
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 10)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Malak Abdulrahman Seid Ahmed ◽  
Nazik Omer ◽  
Ahmed M. Suliman ◽  
Mona Ellaithi

Background: Cyclin D1 expression regulates normal cell cycle. Its deregulation or overexpression may cause disruption in the normal cell cycle control and lead to cancer progression. In this study, we aimed to study the expression of cyclin D1 in oral squamous cell carcinoma (OSCC) and find its association with the different grades of oral tumors, if any.  Methods: This cross-sectional study included 40 formalin-fixed paraffin-embedded tissue blocks specimens of OSCC with variable grades. The expression of cyclin D1 was evaluated through immunohistochemical (IHC) staining. Results: There were 9 female and 31 male samples, with a male-to-female ratio of 3.4:1. The age ranged between 25 and 90 years with an average age of 65.5 years. Twenty-five (62.5%) samples were diagnosed as well-differentiated squamous cell carcinoma (WDSCC) and fifteen (37.5%) as poorly differentiated squamous cell carcinoma (PDSCC). No cases of moderately differentiated squamous carcinoma were included in the study. The expression of cyclin D1 was detected in the cases of WDSCC and a lesser expression was seen in the PDSCC with a P-value of 0.0003, OR 1581 and 95% CI (29.8239 to 83810.7113). Conclusion: Cyclin D1 is expressed in  OSCC and stronger expression was detected in WDSCC.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3468
Author(s):  
Anqi Li ◽  
Xiaotong Su ◽  
Yuan Tian ◽  
Guibing Song ◽  
Linsen Zan ◽  
...  

Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.


2021 ◽  
Vol 72 (4) ◽  
pp. 326-332
Author(s):  
Marina Miletić ◽  
Teuta Murati ◽  
Branimir Šimić ◽  
Nina Bilandžić ◽  
Anamaria Brozović ◽  
...  

Abstract Non-planar di-ortho-substituted PCB 153 (2,2’,4,4’,5,5’-hexachlorobiphenyl), one of the most abundant PCB congeners in the environment and in biological and human tissues, has been identified as potential endocrine disruptor affecting the reproductive and endocrine systems in rodents, wildlife, and humans. The aim of this study was to gain a deeper insight into its mode/mechanism of action in Chinese hamster ovary K1 cells (CHO-K1). PCB 153 (10–100 μmol/L) inhibited CHO-K1 cell proliferation, which was confirmed with four bioassays (Trypan Blue, Neutral Red, Kenacid Blue, and MTT), of which the MTT assay proved the most sensitive. PCB 153 also induced ROS formation in a dose-dependent manner. Apoptosis was seen after 6 h of exposure to PCB 153 doses ≥50 μmol/L, while prolonged exposure resulted in the activation of the necrotic pathway. PCB 153-induced disturbances in normal cell cycle progression were time-dependent, with the most significant effects occurring after 72 h.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258996
Author(s):  
Wandayi Emmanuel Amlabu ◽  
Cynthia Mmalebna Amisigo ◽  
Christine Achiaa Antwi ◽  
Gordon Akanzuwine Awandare ◽  
Theresa Manful Gwira

In the midst of numerous setbacks that beclouds the fight against leishmaniasis; a neglected tropical disease, the search for new chemotherapeutics against this disease is of utmost importance. Leishmaniasis is a disease closely associated with poverty and endemic in Africa, Asia, southern Europe and the Americas. It is caused by parasites of the genus Leishmania and transmitted by a sandfly vector. In this study, we evaluated the antileishmanial potency of eighteen pathogen box compounds and elucidated their biosafety and possible mechanisms of action against Leishmania donovani promastigotes and amastigotes in vitro. IC50s range of 0.12±0.15 to >6.25 μg/ml and 0.13±0.004 to >6.25μg/ml were observed for the promastigotes and amastigotes, respectively. We demonstrated the ability of some of the compounds to cause cytocidal effect on the parasites, induce increased production of reactive oxygen species (ROS), disrupt the normal parasite morphology and cause the accumulation of parasites at the DNA synthesis phase of the cell cycle. We recommend a further in vivo study on these compounds to validate the findings.


2021 ◽  
Vol 22 (16) ◽  
pp. 8508
Author(s):  
Ainsley Mike Antao ◽  
Kamini Kaushal ◽  
Soumyadip Das ◽  
Vijai Singh ◽  
Bharathi Suresh ◽  
...  

Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2818
Author(s):  
Anisa Andleeb ◽  
Aneeta Andleeb ◽  
Salman Asghar ◽  
Gouhar Zaman ◽  
Muhammad Tariq ◽  
...  

Cancer is one of the foremost causes of death worldwide. Cancer develops because of mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled division and proliferation of cells. Various drugs have been used to treat cancer thus far; however, conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost effective, safe, and biocompatible and have got substantial attention from researchers around the globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer; among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au, Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the future prospects and opportunities of nano-therapeutics, are also highlighted.


2021 ◽  
Vol 10 (16) ◽  
pp. 1182-1184
Author(s):  
Shakib Hasan Sheikh ◽  
Vaishali Tembhare ◽  
Seema Singh ◽  
Savita Pohekar ◽  
Samruddhi Gujar

Excessive growth of mature granulocytes in the bone marrow induces chronic myeloid leukemia. The excess neoplastic granulocytes travel massively into the peripheral blood and in the end invade the liver and spleen. The protein encoded on the Philadelphia chromosome by the newly created BCR-ABL gene interferes with normal cell cycle activities, including regulating cell proliferation. Philadelphia chromosome is present in 90 - 95 percent of chronic myeloid leukemia (CML) patients. Their involvement is often a vital indicator of persistent disease or posttreatment relapse. However, for the diagnosis of CML, the presence of the Philadelphia chromosome is not specific since it is also present in acute lymphocytic leukemia (ALL) and rarely in acute myeloid leukemia (AML). 1 Chronic myeloid leukemia is a myeloproliferative neoplasm (MPN) characterised by involvement of the fusion gene BCRABL1 located in the Philadelphia chromosome. In reactive neutrophilia or chronic neutrophilic leukemia, the Ph chromosome is pathognomonic to CML and is never registered.2,3


Author(s):  
Atefeh Jalali ◽  
Farid Dabaghian ◽  
Mohammad M. Zarshenas

Background: Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via the series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional approaches in cancer treatment can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. Objective: Pointing to the importance of new avenues for cancer management and of P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes for the development of novel medicines in cancer treatment. Methods: Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus", database up to the 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. Result and Discussion: In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leonardo Santos ◽  
Laura Colman ◽  
Paola Contreras ◽  
Claudia C. Chini ◽  
Adriana Carlomagno ◽  
...  

Abstract The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


2019 ◽  
Vol 132 (2) ◽  
pp. jcs223123 ◽  
Author(s):  
Hidemasa Goto ◽  
Toyoaki Natsume ◽  
Masato T. Kanemaki ◽  
Aika Kaito ◽  
Shujie Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document