Chloride-dependent conformational changes in the GlyT1 glycine transporter

2020 ◽  
Author(s):  
Yuan-Wei Zhang ◽  
Stacy Uchendu ◽  
Vanessa Leone ◽  
Richard T. Bradshaw ◽  
Ntumba Sangwa ◽  
...  

AbstractThe human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1000-fold by Cl-. We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homologue indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide novel and unexpected insight into the role of Cl- in this family of transporters.

2021 ◽  
Vol 118 (10) ◽  
pp. e2017431118 ◽  
Author(s):  
Yuan-Wei Zhang ◽  
Stacy Uchendu ◽  
Vanessa Leone ◽  
Richard T. Bradshaw ◽  
Ntumba Sangwa ◽  
...  

The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl− exerts its influence is unknown. To examine the role that Cl− plays in the transport cycle, we measured the effect of Cl− on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl−. We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl− independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl− stabilized an inward-open conformation of GlyT1b. We then examined whether Cl− acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl−, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl− in this family of transporters.


Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


ChemCatChem ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 3993-4010 ◽  
Author(s):  
Simon Bailleul ◽  
Sven M. J. Rogge ◽  
Louis Vanduyfhuys ◽  
Veronique Van Speybroeck

2020 ◽  
Vol 6 (14) ◽  
pp. eaay7919
Author(s):  
Nandini Sharma ◽  
Navjeet Ahalawat ◽  
Padmani Sandhu ◽  
Erick Strauss ◽  
Jagannath Mondal ◽  
...  

Transient tunnels that assemble and disassemble to facilitate passage of unstable intermediates in enzymes containing multiple reaction centers are controlled by allosteric cues. Using the 140-kDa purine biosynthetic enzyme PurL as a model system and a combination of biochemical and x-ray crystallographic studies, we show that long-distance communication between ~25-Å distal active sites is initiated by an allosteric switch, residing in a conserved catalytic loop, adjacent to the synthetase active site. Further, combinatory experiments seeded from molecular dynamics simulations help to delineate transient states that bring out the central role of nonfunctional adaptor domains. We show that carefully orchestrated conformational changes, facilitated by interplay of dynamic interactions at the allosteric switch and adaptor-domain interface, control reactivity and concomitant formation of the ammonia tunnel. This study asserts that substrate channeling is modulated by allosteric hotspots that alter protein energy landscape, thereby allowing the protein to adopt transient conformations paramount to function.


2006 ◽  
Vol 401 (1) ◽  
pp. 287-297 ◽  
Author(s):  
Miriam Laxa ◽  
Janine König ◽  
Karl-Josef Dietz ◽  
Andrea Kandlbinder

Cyps (cyclophilins) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved cysteine residues further suggest a role in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast-located CYP20-3, site-directed mutagenized cysteine→serine variants were generated and analysed for enzymatic and conformational properties under reducing and oxidizing conditions. Compared with the wild-type form, elimination of three out of the four cysteine residues decreased the catalytic efficiency of PPI (peptidyl-prolyl cis–trans isomerase) activity of the reduced CYP20-3, indicating a regulatory role of dithiol–disulfide transitions in protein function. Oxidation was accompanied by conformational changes with a predominant role in the structural rearrangement of the disulfide bridge formed between Cys54 and Cys171. The rather negative Em (midpoint redox potential) of −319 mV places CYP20-3 into the redox hierarchy of the chloroplast, suggesting the activation of CYP20-3 in the light under conditions of limited acceptor availability for photosynthesis as realized under environmental stress. Chloroplast Prx (peroxiredoxins) were identified as interacting partners of CYP20-3 in a DNA-protection assay. A catalytic role in the reduction of 2-Cys PrxA and 2-Cys PrxB was assigned to Cys129 and Cys171. In addition, it was shown that the isomerization and disulfide-reduction activities are two independent functions of CYP20-3 that both are regulated by the redox state of its active centre.


2016 ◽  
Vol 14 (40) ◽  
pp. 9588-9597 ◽  
Author(s):  
Yunsheng Xue ◽  
Yuhui Wang ◽  
Zhongyan Cao ◽  
Jian Zhou ◽  
Zhao-Xu Chen

DFT calculations reveal the viability of the two possible ion pair-hydrogen bonding and Brønsted acid-hydrogen bonding dual activation modes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pingna Zhang ◽  
Weijun Huang ◽  
Qiyan Zheng ◽  
Jingyi Tang ◽  
Zhaocheng Dong ◽  
...  

Membranous nephropathy (MN) is an organ-restricted autoimmune disease mainly caused by circulating autoantibodies against podocyte antigens, including the M-type phospholipase A2 receptor (PLA2R) and thrombospondin domain-containing 7A (THSD7A). Antibodies against PLA2R are present in 70%–80% and against THSD7A in 2% of adult patients, which provides a paradigm shift in molecular diagnosis and management monitoring. Both antigens share some similar characteristics: they are expressed by podocytes and have wide tissue distributions; they are bound by autoantibodies only under nonreducing conditions, and the subtype of most autoantibodies is IgG4. However, the factors triggering autoantibody production as well as the association among air pollution, malignancy, and the pathogenesis of MN remain unclear. In this review, we discuss the similarity between the pathological mechanisms triggered by disparate antigens and their associated diseases. Furthermore, we demonstrated the possibility that PM2.5, malignancy, and gene expression specifically induce exposure of these antigens through conformational changes, molecular mimicry, or increased expression eliciting autoimmune responses. Thus, this review provides novel insights into the pathological mechanism of MN.


2019 ◽  
Vol 116 (31) ◽  
pp. 15475-15484 ◽  
Author(s):  
Zachary S. Hann ◽  
Cheng Ji ◽  
Shaun K. Olsen ◽  
Xuequan Lu ◽  
Michaelyn C. Lux ◽  
...  

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures ofSchizosaccharomyces pombeUb E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.


2004 ◽  
Vol 11 (2) ◽  
pp. 261-265 ◽  
Author(s):  
Harikrishnan Ramachandran ◽  
Banani Banerjee ◽  
Paul A. Greenberger ◽  
Kevin J. Kelly ◽  
Jordan N. Fink ◽  
...  

ABSTRACT Among the several allergens cloned and expressed from Aspergillus fumigatus, Asp f 4 is a major one associated with allergic bronchopulmonary aspergillosis (ABPA). The structure-function relationship of allergens is important in understanding the immunopathogenesis, diagnosis, and treatment of allergic diseases. These include the epitopes, conformational or linear, deletion of the N or C terminus or both N and C termini, and glycosylation or nonglycosylation, all of which affect immune responses. Similarly, the role of cysteine residues present in allergens may yield useful information regarding the conformational structure of allergens and the immunoglobulin E (IgE) epitope interaction. Such information may help in developing new strategies towards immunotherapy. In order to define the role of cysteine in the interaction of the antibody with Asp f 4, we have constructed mutants by selectively deleting cysteine residues from the C-terminal region of the Asp f 4. Immunological evaluation of these engineered recombinant constructs was conducted by using sera from patients with ABPA, Aspergillus skin test-positive asthmatics, and healthy controls. The results demonstrate strong IgE binding with Asp f 4 and two truncated mutants, Asp f 41-234 (amino acids [aa] 1 to 234) and Asp f 41-241 (aa 1 to 241), while another mutant, Asp f 41-196 (aa 1 to 196), showed reactivity with fewer patients. The result suggests that deletion of cysteines and the alteration of IgE epitopes at the C-terminal end resulted in conformational changes, which may have a potential role in the immunomodulation of the disease.


Sign in / Sign up

Export Citation Format

Share Document