pathological mechanism
Recently Published Documents





2022 ◽  
Vol 4 (1) ◽  
Daxu Peng ◽  
Yifan Zhang ◽  
Xiuyang Cao ◽  
Jianyi Pu

Stress hyperglycemia is a strong neuroendocrine reaction in thehypothalamic pituitary adrenal cortex under severe infection, trauma, burns,hemorrhage, surgery and other harmful stimulated, resulting in increasedsecretion of counter-regulatory hormones. These hormones promotedthe production of sugar and cause glucose metabolism disorders withcytokines and insulin resistance. In this condition, the production of sugarexceeds the utilization of sugar by the tissues, which eventually leads to anincrease in blood glucose levels in plasma. In the intensive care unit, stresshyperglycemia is very common and can occur in patients with or withoutdiabetes. The incidence is as high as 96%, and it is an independent factorin the death of critically ill patients. Hyperglycemia not only prolongsthe hospitalization time, mechanical ventilation time and increased theincidence of serious infections in critically ill patients, but can also leadto the occurrence of type 2 diabetes. Therefore, it is very important tolearn the pathological mechanism of stress hyperglycemia, the harm ofhyperglycemia and blood sugar management.

2022 ◽  
Yong-Zheng Zhang ◽  
ZHANG Yong-Zheng ◽  
LI Meng-Jia ◽  
WU Yang ◽  

Abstract Background At present, scholars believe that severe COVID-19 is related to a variety of basic diseases, and we also observe this point using multi-omics method. The latest sequencing data of severe COVID-19 patients were combined to analyze the pathological mechanism, and pharmacological experimental research on local drugs was conducted, and a compound ingredient was found to have potential medicinal value. Results Here, we observed, for patients with severe COVID-19 disease, the differential miRNA expression is mainly low but having higher expression of mRNA. These differential mRNA expressions are associated with the activation of inflammatory pathways and ultimately with hypoxia and coagulation. Using database analysis, we found that Yi Xin Tong Mai Granule(YXTMG) might regulate COVID-19 through Toll-like receptor signaling pathway by acting on different immune targets. We found a new molecular mechanism for COVID-19 to turn the crisis around, the down-regulated miR-181a-5p mediates the up-regulation of PLAU and SERPINE1 molecules to cause cardiovascular adverse events, and YXTMG may prevent it. At the same time, molecular docking indicated that the its various components have anti-inflammatory activity. In vitro studies, we confirmed that YXTMG had antioxidant and anti-inflammatory activities. Conclusions The study has supplemented the potential mechanism for the conversion of mild to critical COVID-19 disease and screened the Chinese medicines for improving these factors, providing methodological reference for disease pathology and drug development.

2022 ◽  
Vol 2022 ◽  
pp. 1-21
Yongjin Li ◽  
Xiaojing Wu ◽  
Jianhua Li ◽  
Lilong Du ◽  
Xuke Wang ◽  

The abnormal function of nucleus pulposus cells (NPCs) plays a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have demonstrated that circular RNAs (circRNAs) are involved in the pathological process of IVDD by regulating NPCs’ function. Nevertheless, the investigation on circRNA-circRNA interaction has not yet been reported. Here, we identified the top upregulated circ_0040039 and circ_0004354 in IVDD, derived from the syntrophin beta 2 gene but had different degrees of biological functions. Accumulating studies have reported PANoptosis is composed of apoptosis, pyroptosis, and necroptosis. Based on this, we think there should be a new pro-inflammatory cell death PAoptosis in the form of apoptosis and pyroptosis. Circ_0004354 might compete with circ_0040039 to induce the development of IVDD by modulating miR-345-3p-FAF1/TP73 axis-mediated PAoptosis, inflammatory response, growth inhibition, and ECM degradation of NPCs. Thus, these findings offer a novel insight into the circRNAs-mediated posttranscriptional regulatory network in IVDD, contributing to further clarification of the pathological mechanism of IVDD to develop a promising therapeutic target for IVDD diseases.

2021 ◽  
Vol 36 (2) ◽  
pp. 211-216
Jung Hyun Park

The etiology of the vertebral artery dissecting aneurysm (VADA) is unknown and they frequently occur in relatively healthy young men. Therefore, the pathological mechanism by which VADAs occur has not been accurately identified. In this paper, we will examine a case in which a young man complaining of a simple headache became unconscious due to the rupture of a VADA in grew immediately.

2021 ◽  
Vol 23 (1) ◽  
pp. 372
Mariane Beatriz Sordi ◽  
Ricardo de Souza Magini ◽  
Layla Panahipour ◽  
Reinhard Gruber

Pyroptosis is a caspase-dependent process relevant to the understanding of beneficial host responses and medical conditions for which inflammation is central to the pathophysiology of the disease. Pyroptosis has been recently suggested as one of the pathways of exacerbated inflammation of periodontal tissues. Hence, this focused review aims to discuss pyroptosis as a pathological mechanism in the cause of periodontitis. The included articles presented similarities regarding methods, type of cells applied, and cell stimulation, as the outcomes also point to the same direction considering the cellular events. The collected data indicate that virulence factors present in the diseased periodontal tissues initiate the inflammasome route of tissue destruction with caspase activation, cleavage of gasdermin D, and secretion of interleukins IL-1β and IL-18. Consequently, removing periopathogens’ virulence factors, triggering pyroptosis, is a potential strategy to combat periodontal disease and regain tissue homeostasis.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Jiali Liu ◽  
Pangao Xu ◽  
Dekun Liu ◽  
Ruiqing Wang ◽  
Shengnan Cui ◽  

Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.

2021 ◽  
Vol 14 ◽  
Supriya Mishra ◽  
Vikram Jeet Singh ◽  
Pooja A Chawla ◽  
Viney Chawla

Background: Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. Aims: The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. Methods: This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. Results: The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. Conclusion: Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.

Yu Liu ◽  
Han Jiang ◽  
Xiyi Qin ◽  
Mei Tian ◽  
Hong Zhang

AbstractThe reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.

2021 ◽  
Vol 27 (1) ◽  
Qiao En ◽  
Huang Zeping ◽  
Wang Yuetang ◽  
Wang Xu ◽  
Wang Wei

Abstract Background Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. Methods We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. Results We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. Conclusions This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.

Sign in / Sign up

Export Citation Format

Share Document