scholarly journals Aquatic insects are dramatically underrepresented in genomic research

2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 601 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

Aquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes), yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.


2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


1982 ◽  
Vol 60 (12) ◽  
pp. 3459-3461 ◽  
Author(s):  
Ronald B. Aiken

The possible use of sounds produced by aquatic insects over distances similar to those of terrestrial insects was examined. Pure tones, spanning the range of those found in aquatic insect sounds, were broadcast in shallow water. At intensities representative of those produced by aquatic insects, all frequencies were usually attentuated within 1 m and their function as acoustic beacons must be considered within such limits.


1987 ◽  
Vol 119 (S140) ◽  
pp. 163-174 ◽  
Author(s):  
H.V. Danks ◽  
David M. Rosenberg

AbstractAvailable information on the insect fauna of freshwater bogs, fens, and marshes is reviewed. These habitats are extensive and important in Canada. The fauna of marshes is diverse, and appears to consist chiefly of generally distributed lentic species. The fauna of bogs has some specialized elements, but most bog species are generalists. The fauna of Canadian fens is little known, but from limited data for a few groups appears to be moderately rich. Features expected in generalist and specialist species from peatlands and marshes are summarized, and the possible roles of insects in these ecosystems are outlined. Particular needs for future research include the following: careful definition of different kinds of wetland habitats; meticulous sampling of defined habitats to distinguish residents from incidental visitors; and detailed study of the life histories and habits of individual species. Further sampling, and studies of larvae, undoubtedly will increase the numbers of insects known from Canadian peatlands and marshes. About 4000 aquatic insect species are known from Canada. So far only 22% of the species in groups for which detailed information is available have been reported to occur in marshes, and only half as many in peatlands, even though some of the recorded species probably do not breed in all of the habitats from which they have been collected.


2021 ◽  
Author(s):  
Yumiko Ishii ◽  
Hikaru Miura ◽  
Jaeick Jo ◽  
Hideki Tsuji ◽  
Rie Saito ◽  
...  

<p>Radiocesium-bearing microparticles (CsMPs), which are insoluble, Cs-bearing, silicate glass particles, have been found in terrestrial and freshwater environments after the TEPCO's Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan. Few studies have investigated the distribution of CsMPs in freshwater ecosystems and their uptake by aquatic organisms. In this study, we determined the uptake of CsMPs by aquatic insects in the Ota River in Fukushima. Although aquatic insects are usually measured for radioactivity in bulk samples of several tens of insects, we investigated the variability of <sup>137</sup>Cs concentration in individual aquatic insects, and the influence of CsMPs on them. Measurement of <sup>137</sup>Cs concentrations in detritivorous caddisfly (Stenopsyche marmorata) larvae and carnivorous dragonfly larvae showed that 3 of 47 caddisfly larvae had considerably higher radioactivity, whereas no such outliers were observed in dragonfly larvae. These caddisfly larvae were confirmed to contain the CsMPs emitted from Unit 2 of the FDNPP, using a scanning electron microscope and radioactivity measurements after isolation of the CsMPs. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Our study demonstrated that CsMPs could be taken up by aquatic insects and possibly by the fish consuming them. The existence of CsMPs can result in sporadic, extremely high <sup>137</sup>Cs concentrations, and large variations in samples, and consequently obscure the actual transfer and temporal trends of <sup>137</sup>Cs in freshwater ecosystems.</p>


2007 ◽  
Vol 58 (8) ◽  
pp. 725 ◽  
Author(s):  
Eric K. W. Chan ◽  
Yixin Zhang ◽  
David Dudgeon

The contribution of adult aquatic insects to riparian prey availability at four sites along three hillstreams in Hong Kong was estimated during 2004–2006 dry and wet seasons using light traps deployed at different distances from the banks. The number and biomass of aquatic and terrestrial insects collected were markedly higher during the wet season. Numerically, aquatic insects (especially Chironomidae and Philopotamidae) remained a major catch component along banks throughout the year comprising 77% (range: 61–85%) of total insects. Their contribution to total biomass was higher in the wet season (mean: 50%, range: 33–62%) than during the dry season (mean: 21%, range: 8–45%). Aquatic insect abundance decreased with increasing distance from streams during both seasons: numbers at 10–20 m distance were less than 45% of those at the banks, declining to less than 13% at 80 m distance. No such decline with distance was observed for terrestrial insects, but the limited dispersal of aquatic insects meant total insect catches were highest along stream banks. Changes in biomass with distance from streams were similar to those for abundance. Adult aquatic insects may represent an important water-to-land energy subsidy for riparian predators in Hong Kong, but the magnitude varied seasonally and fell sharply with increasing distance from streams.


2019 ◽  
Vol 70 (4) ◽  
pp. 609
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 157 ◽  
Author(s):  
Jill Lancaster ◽  
Barbara Downes

The study of insect populations is dominated by research on terrestrial insects. Are aquatic insect populations different or are they just presumed to be different? We explore the evidence across several topics. (1) Populations of terrestrial herbivorous insects are constrained most often by enemies, whereas aquatic herbivorous insects are constrained more by food supplies, a real difference related to the different plants that dominate in each ecosystem. (2) Population outbreaks are presumed not to occur in aquatic insects. We report three examples of cyclical patterns; there may be more. (3) Aquatic insects, like terrestrial insects, show strong oviposition site selection even though they oviposit on surfaces that are not necessarily food for their larvae. A novel outcome is that density of oviposition habitat can determine larval densities. (4) Aquatic habitats are often largely 1-dimensional shapes and this is presumed to influence dispersal. In rivers, drift by insects is presumed to create downstream dispersal that has to be countered by upstream flight by adults. This idea has persisted for decades but supporting evidence is scarce. Few researchers are currently working on the dynamics of aquatic insect populations; there is scope for many more studies and potentially enlightening contrasts with terrestrial insects.


Author(s):  
Nguyen Van Hieu ◽  
Nguyen Van Vinh

An intensive field survey on aquatic insects of Me Linh Station for Biodiversity in Vinhphuc province was conducted in December 2015. Specimens were collected at 8 different sites and aquatic insects were collected both quantitatively by Surber net and qualitatively by hand net, pond net. As a result, a total of 110 aquatic insect species belonging to 98 genera, 49 families and 9 orders were recognized. Among these, the order Ephemeroptera had the highest species number with 26 species, followed by Odonata with 25 species, Trichoptera with 18 species, Coleoptera with 15 species, Hemiptera with 11 species, Diptera with 9 species. Lepidoptera, Plecoptera and Megaloptera had the lowest of species number, represented by 3 species of Lepidoptera, 2 species of Plecoptera and 1 species of Megaloptera. Besides, the quantitative analysis results and the functional feeding groups were provided.


Sign in / Sign up

Export Citation Format

Share Document