insect genome
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Sato ◽  
Seonghan Jang ◽  
Kazutaka Takeshita ◽  
Hideomi Itoh ◽  
Hideaki Koike ◽  
...  

AbstractInsecticide resistance is one of the most serious problems in contemporary agriculture and public health. Although recent studies revealed that insect gut symbionts contribute to resistance, the symbiont-mediated detoxification process remains unclear. Here we report the in vivo detoxification process of an organophosphorus insecticide, fenitrothion, in the bean bug Riptortus pedestris. Using transcriptomics and reverse genetics, we reveal that gut symbiotic bacteria degrade this insecticide through a horizontally acquired insecticide-degrading enzyme into the non-insecticidal but bactericidal compound 3-methyl-4-nitrophenol, which is subsequently excreted by the host insect. This integrated “host-symbiont reciprocal detoxification relay” enables the simultaneous maintenance of symbiosis and efficient insecticide degradation. We also find that the symbiont-mediated detoxification process is analogous to the insect genome-encoded fenitrothion detoxification system present in other insects. Our findings highlight the capacity of symbiosis, combined with horizontal gene transfer in the environment, as a powerful strategy for an insect to instantly eliminate a toxic chemical compound, which could play a critical role in the human-pest arms race.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009745
Author(s):  
Matthew H. Van Dam ◽  
Analyn Anzano Cabras ◽  
James B. Henderson ◽  
Andrew J. Rominger ◽  
Cynthia Pérez Estrada ◽  
...  

Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Guillem Ylla ◽  
Taro Nakamura ◽  
Takehiko Itoh ◽  
Rei Kajitani ◽  
Atsushi Toyoda ◽  
...  

AbstractMost of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.


Author(s):  
Michael E Sparks ◽  
Francois Olivier Hebert ◽  
J Spencer Johnston ◽  
Richard Hamelin ◽  
Michel Cusson ◽  
...  

Abstract The European gypsy moth, Lymantria dispar dispar (LDD), is an invasive insect and a threat to urban trees, forests and forest-related industries in North America. For use as a comparator with a previously published genome based on the LD652 pupal ovary-derived cell line, as well as whole-insect genome sequences obtained from the Asian gypsy moth subspecies L. dispar asiatica and L. dispar japonica, the whole-insect LDD genome was sequenced, assembled and annotated. The resulting assembly was 998 Mb in size, with a contig N50 of 662 Kb and GC content of 38.8%. Long interspersed nuclear elements (LINEs) constitute 25.4% of the whole-insect genome, and a total of 11,901 genes predicted by automated gene finding encoded proteins exhibiting homology with reference sequences in the NCBI NR and/or UniProtKB databases at the most stringent similarity cutoff level (i.e., the gold tier). These results will be especially useful in developing a better understanding of the biology and population genetics of L. dispar and the genetic features underlying Lepidoptera in general.


2021 ◽  
Author(s):  
Xiaolong Li ◽  
Hong Li ◽  
Zhenhua Yang ◽  
Zefeng Zhang

Abstract Background: Exploring the composition and evolution regularity of genome sequences and constructing phylogenetic relationship by alignment-free method in genome level are high-profile topics. Our previous researches discovered the CG and TA independent selection laws existed in genome sequences by analysis on the spectral features of 8-mer subsets of 920 eukaryote and prokaryote genomes. We found that the evolution state of genomes is determined by the intensity of the two independent selections and the degree of the mutual inhibition between them. Results: In this study, the two independent selection patterns of 22 primate and 28 insect genome sequences were analyzed further. The two complete 8-mer motif sets containing CG or TA dinucleotide and their feature of relative frequency are proposed. We found that the two 8-mer sets and their feature are related directly to sequence evolution of genomes. According to the relative frequency of two 8-mer sets, phylogenetic trees were constructed respectively for the given primate and insect genomes. Through analysis and comparison, we found that our phylogenetic trees are more consistent with the known conclusions. Conclusions: The two kinds of phylogenetic relationships constructed by CG 8-mer set and TA 8-mer set are similar in insect genomes, but the phylogenetic relationship constructed by CG 8-mer set reflect the evolution state of genomes in current age and phylogenetic relationship constructed by TA 8-mer set reflect the evolution state of genomes in a slight earlier period. We thought it is the result that the TA independent selection is repressed by the CG independent selection in the process of genome evolution. Our study provides a theoretical approach to construct more objective evolution relationships in genome level.


2021 ◽  
Author(s):  
Xiaolong Li ◽  
Hong Li ◽  
Zhenhua Yang ◽  
Zefeng Zhang

Exploring the composition and evolution regularity of genome sequences and constructing phylogenetic relationship by alignment-free method in genome level are high-profile topics. Our previous researches discovered the CG and TA independent selection laws existed in genome sequences by analysis on the spectral features of 8-mer subsets of 920 eukaryote and prokaryote genomes. We found that the evolution state of genomes is determined by the intensity of the two independent selections and the degree of the mutual inhibition between them. In this study, the two independent selection patterns of 22 primate and 28 insect genome sequences were analyzed further. The two complete 8-mer motif sets containing CG or TA dinucleotide and their feature of relative frequency are proposed. We found that the two 8-mer sets and their feature are related directly to sequence evolution of genomes. According to the relative frequency of two 8-mer sets, phylogenetic trees were constructed respectively for the given primate and insect genomes. Through analysis and comparison, we found that our phylogenetic trees are more consistent with the known conclusions. The two kinds of phylogenetic relationships constructed by CG 8-mer set and TA 8-mer set are similar in insect genomes, but the phylogenetic relationship constructed by CG 8-mer set reflect the evolution state of genomes in current age and phylogenetic relationship constructed by TA 8-mer set reflect the evolution state of genomes in a slight earlier period. We thought it is the result that the TA independent selection is repressed by the CG independent selection in the process of genome evolution. Our study provides a theoretical approach to construct more objective evolution relationships in genome level.


2021 ◽  
Author(s):  
Scott Hotaling ◽  
John S. Sproul ◽  
Jacqueline Heckenhauer ◽  
Ashlyn Powell ◽  
Amanda M. Larracuente ◽  
...  

The first insect genome (Drosophila melanogaster) was published two decades ago. Today, nuclear genome assemblies are available for a staggering 601 different insects representing 20 orders. Here, we analyzed the best assembly for each insect and provide a “state of the field” perspective, emphasizing taxonomic representation, assembly quality, gene completeness, and sequencing technology. We show that while genomic efforts have been biased towards specific groups (e.g., Diptera), assemblies are generally contiguous with gene regions intact. Most notable, however, has been the impact of long-read sequencing; assemblies that incorporate long-reads are ∼48x more contiguous than those that do not.


2020 ◽  
Author(s):  
Matthew H. Van Dam ◽  
Analyn Anzano Cabras ◽  
James B. Henderson ◽  
Cynthia Pérez Estrada ◽  
Arina D. Omer ◽  
...  

AbstractPatterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders? We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta. We find that synteny largely scales with clade age, with younger clades, such as Lepidoptera, having especially high synteny. However, we do find subtle differences in the maintenance of synteny and its rate of decay among the insect orders.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 601 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

Aquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes), yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.


2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.


Sign in / Sign up

Export Citation Format

Share Document