Contribution of adult aquatic insects to riparian prey availability along tropical forest streams

2007 ◽  
Vol 58 (8) ◽  
pp. 725 ◽  
Author(s):  
Eric K. W. Chan ◽  
Yixin Zhang ◽  
David Dudgeon

The contribution of adult aquatic insects to riparian prey availability at four sites along three hillstreams in Hong Kong was estimated during 2004–2006 dry and wet seasons using light traps deployed at different distances from the banks. The number and biomass of aquatic and terrestrial insects collected were markedly higher during the wet season. Numerically, aquatic insects (especially Chironomidae and Philopotamidae) remained a major catch component along banks throughout the year comprising 77% (range: 61–85%) of total insects. Their contribution to total biomass was higher in the wet season (mean: 50%, range: 33–62%) than during the dry season (mean: 21%, range: 8–45%). Aquatic insect abundance decreased with increasing distance from streams during both seasons: numbers at 10–20 m distance were less than 45% of those at the banks, declining to less than 13% at 80 m distance. No such decline with distance was observed for terrestrial insects, but the limited dispersal of aquatic insects meant total insect catches were highest along stream banks. Changes in biomass with distance from streams were similar to those for abundance. Adult aquatic insects may represent an important water-to-land energy subsidy for riparian predators in Hong Kong, but the magnitude varied seasonally and fell sharply with increasing distance from streams.

2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.


1982 ◽  
Vol 60 (12) ◽  
pp. 3459-3461 ◽  
Author(s):  
Ronald B. Aiken

The possible use of sounds produced by aquatic insects over distances similar to those of terrestrial insects was examined. Pure tones, spanning the range of those found in aquatic insect sounds, were broadcast in shallow water. At intensities representative of those produced by aquatic insects, all frequencies were usually attentuated within 1 m and their function as acoustic beacons must be considered within such limits.


Author(s):  
T. Kubendran ◽  
M. Ramesh

<div><p><em>The Western Ghats, running parallel to the west coast of India between 8° N and 21° N is a prominent feature of the peninsular India. In freshwater biodiversity hotspots like the Western Ghats, no information is available on activates and ecological role of adult aquatic insect in the riparian zone of streams.</em><strong><em> </em></strong><em>Most adult aquatic insects that emerge from streams live briefly in the nearby riparian zone. Adult activities, such as mating dispersal and feeding influence their distribution in the terrestrial habitat. An observation at Kurangani streams, Western Ghats, India has shown that both numbers and biomass of adult aquatic insects are greatest in the near stream vegetation; however, adult insects can be relatively common 1 to 10 feet from the stream. Why because, adult aquatic insects are abundant and they are primary food resource for many riparian insectivores. The role of adult aquatic insects in the riparian zone must be better understood for riparian and aquatic food chain to be complete. </em></p></div>


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 601 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

Aquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes), yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.


2008 ◽  
Vol 59 (8) ◽  
pp. 653 ◽  
Author(s):  
Eric K. W. Chan ◽  
Yixin Zhang ◽  
David Dudgeon

Terrestrial arthropods might represent an important energy source for stream predators, but these trophic linkages have seldom been studied in the tropics. Terrestrial arthropod inputs (essentially, arthropod ‘rain’) into four streams with different riparian vegetation (two draining shrublands and two draining forests) were measured over three consecutive seasons (dry, wet, dry) from 2005 to 2007 in monsoonal Hong Kong. Predatory minnows, Parazacco spilurus (Cyprinidae), were collected and their consumption of terrestrial arthropods was estimated. Inputs of arthropods were dominated by Diptera, Collembola, Formicidae and aerial Hymenoptera, accounting for ≥73% of the arthropod abundance. Seasonal variation was marked: numbers in the dry seasons were approximately half (47–57%) those in the wet season, and biomass fell to one-third (33–37%) of the wet-season value. Shrubland streams received 19–43% fewer individuals and 6–34% less biomass than shaded forest streams. An analysis of fish diets in three of the four streams showed that terrestrial insects and spiders were more important prey in the two forest streams, accounting for 35–43% of prey abundance (39–43% by volume) v. 28% (27%) in the shrubland stream. Because riparian vegetation is the source of terrestrial arthropod inputs to streams, degradation of streamside forests that reduce these inputs will have consequences for the diets of stream fishes.


2010 ◽  
Vol 67 (3) ◽  
pp. 570-579 ◽  
Author(s):  
Rachel L. Malison ◽  
Colden V. Baxter

We investigated the midterm effects of wildfire (in this case, five years after the fire) of varying severity on periphyton, benthic invertebrates, emerging adult aquatic insects, spiders, and bats by comparing unburned sites with those exposed to low severity (riparian vegetation burned but canopy intact) and high severity (canopy completely removed) wildfire. We observed no difference in periphyton chlorophyll a or ash-free dry mass among different burn categories but did observe significantly greater biomass of benthic invertebrates in both high severity burned and unburned reaches versus low severity burned reaches. Moreover, a significantly greater flux of adult aquatic insect emergence occurred at sites that experienced high severity fire versus low severity burned and unburned sites. The greatest number of spiders and bat echolocation calls were also observed at sites of high severity fire. Our results suggest that fires of different severity may have very different affects on stream-riparian food webs and that high severity wildfire may lead to an extended “fire pulse” that stimulates aquatic productivity and flux of prey to terrestrial habitats, driving local increases in riparian consumers.


2019 ◽  
Vol 70 (4) ◽  
pp. 609
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 157 ◽  
Author(s):  
Jill Lancaster ◽  
Barbara Downes

The study of insect populations is dominated by research on terrestrial insects. Are aquatic insect populations different or are they just presumed to be different? We explore the evidence across several topics. (1) Populations of terrestrial herbivorous insects are constrained most often by enemies, whereas aquatic herbivorous insects are constrained more by food supplies, a real difference related to the different plants that dominate in each ecosystem. (2) Population outbreaks are presumed not to occur in aquatic insects. We report three examples of cyclical patterns; there may be more. (3) Aquatic insects, like terrestrial insects, show strong oviposition site selection even though they oviposit on surfaces that are not necessarily food for their larvae. A novel outcome is that density of oviposition habitat can determine larval densities. (4) Aquatic habitats are often largely 1-dimensional shapes and this is presumed to influence dispersal. In rivers, drift by insects is presumed to create downstream dispersal that has to be countered by upstream flight by adults. This idea has persisted for decades but supporting evidence is scarce. Few researchers are currently working on the dynamics of aquatic insect populations; there is scope for many more studies and potentially enlightening contrasts with terrestrial insects.


Author(s):  
Nguyen Van Hieu ◽  
Nguyen Van Vinh

An intensive field survey on aquatic insects of Me Linh Station for Biodiversity in Vinhphuc province was conducted in December 2015. Specimens were collected at 8 different sites and aquatic insects were collected both quantitatively by Surber net and qualitatively by hand net, pond net. As a result, a total of 110 aquatic insect species belonging to 98 genera, 49 families and 9 orders were recognized. Among these, the order Ephemeroptera had the highest species number with 26 species, followed by Odonata with 25 species, Trichoptera with 18 species, Coleoptera with 15 species, Hemiptera with 11 species, Diptera with 9 species. Lepidoptera, Plecoptera and Megaloptera had the lowest of species number, represented by 3 species of Lepidoptera, 2 species of Plecoptera and 1 species of Megaloptera. Besides, the quantitative analysis results and the functional feeding groups were provided.


Sign in / Sign up

Export Citation Format

Share Document