scholarly journals Mechanistic basis for motor-driven membrane constriction by dynamin

2020 ◽  
Author(s):  
Oleg Ganichkin ◽  
Renee Vancraenenbroeck ◽  
Gabriel Rosenblum ◽  
Hagen Hofmann ◽  
Alexander S. Mikhailov ◽  
...  

AbstractThe mechano-chemical GTPase dynamin assembles on membrane necks of clathrin-coated vesicles into helical oligomers that constrict and eventually cleave the necks in a GTP-dependent way. It remains not clear whether dynamin achieves this via molecular motor activity and, if so, by what mechanism. Here, we used ensemble kinetics, single-molecule FRET and molecular dynamics simulations to characterize dynamin’s GTPase cycle and determine the powerstroke strength. The results were incorporated into a coarse-grained structural model of dynamin filaments on realistic membrane templates. Working asynchronously, dynamin’s motor modules were found to collectively constrict a membrane tube. Force is generated by motor dimers linking adjacent helical turns and constriction is accelerated by their strain-dependent dissociation. Consistent with experiments, less than a second is needed to constrict a membrane tube to the hemi-fission radius. Thus, a membrane remodeling mechanism relying on cooperation of molecular ratchet motors driven by GTP hydrolysis has been revealed.

2021 ◽  
Vol 118 (28) ◽  
pp. e2101144118
Author(s):  
Oleg M. Ganichkin ◽  
Renee Vancraenenbroeck ◽  
Gabriel Rosenblum ◽  
Hagen Hofmann ◽  
Alexander S. Mikhailov ◽  
...  

Dynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single-molecule Förster resonance energy transfer (smFRET) and found strong nucleotide-dependent conformational preferences. Integrating smFRET with molecular dynamics simulations allowed us to estimate the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemifission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.


2019 ◽  
Author(s):  
Jeffrey K. Noel ◽  
Frank Noé ◽  
Oliver Daumke ◽  
Alexander S. Mikhailov

AbstractPeripheral membrane proteins with intrinsic curvature can act both as sensors of membrane curvature and shape modulators of the underlying membranes. A well-studied example of such proteins is the mechano-chemical GTPase dynamin that assembles into helical filaments around membrane tubes and catalyzes their scission in a GTPase-dependent manner. It is known that the dynamin coat alone, without GTP, can constrict membrane tubes to radii of about 10 nanometers, indicating that the intrinsic shape and elasticity of dynamin filaments should play an important role in membrane remodeling. However, molecular and dynamic understanding of the process is lacking. Here, we develop a dynamical polymer-chain model for a helical elastic filament bound on a deformable membrane tube of conserved mass, accounting for thermal fluctuations in the filament and lipid flows in the membrane. The model is based on a locally-cylindrical helix approximation for dynamin. We obtain the elastic parameters of the dynamin filament by molecular dynamics simulations of its tetrameric building block and also from coarse-grained structure-based simulations of a 17-dimer filament. The results show that the stiffness of dynamin is comparable to that of the membrane. We determine equilibrium shapes of the filament and the membrane, and find that mostly the pitch of the filament, not its radius, is sensitive to variations in membrane tension and stiffness. The close correspondence between experimental estimates of the inner tube radius and those predicted by the model suggests that dynamin’s “stalk” region is responsible for its GTP-independent membrane-shaping ability. The model paves the way for future mesoscopic modeling of dynamin with explicit motor function.


2014 ◽  
Vol 107 (8) ◽  
pp. 1913-1923 ◽  
Author(s):  
Matteo Gabba ◽  
Simón Poblete ◽  
Tobias Rosenkranz ◽  
Alexandros Katranidis ◽  
Daryan Kempe ◽  
...  

2016 ◽  
Vol 113 (39) ◽  
pp. E5711-E5720 ◽  
Author(s):  
Kristine Manibog ◽  
Kannan Sankar ◽  
Sun-Ae Kim ◽  
Yunxiang Zhang ◽  
Robert L. Jernigan ◽  
...  

Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces.


2021 ◽  
Author(s):  
Steffen Wolf ◽  
Benedikt Sohmen ◽  
Björn Hellenkamp ◽  
Johann Thurn ◽  
Gerhard Stock ◽  
...  

We report on a study that combines advanced fluorescence methods with molecular dynamics simulations to cover timescales from nanoseconds to milliseconds for a large protein, the chaperone Hsp90.


2018 ◽  
Vol 115 (50) ◽  
pp. 12751-12756 ◽  
Author(s):  
Satyan Sharma ◽  
Manfred Lindau

Release of neurotransmitters from synaptic vesicles begins with a narrow fusion pore, the structure of which remains unresolved. To obtain a structural model of the fusion pore, we performed coarse-grained molecular dynamics simulations of fusion between a nanodisc and a planar bilayer bridged by four partially unzipped SNARE complexes. The simulations revealed that zipping of SNARE complexes pulls the polar C-terminal residues of the synaptobrevin 2 and syntaxin 1A transmembrane domains to form a hydrophilic core between the two distal leaflets, inducing fusion pore formation. The estimated conductances of these fusion pores are in good agreement with experimental values. Two SNARE protein mutants inhibiting fusion experimentally produced no fusion pore formation. In simulations in which the nanodisc was replaced by a 40-nm vesicle, an extended hemifusion diaphragm formed but a fusion pore did not, indicating that restricted SNARE mobility is required for rapid fusion pore formation. Accordingly, rapid fusion pore formation also occurred in the 40-nm vesicle system when SNARE mobility was restricted by external forces. Removal of the restriction is required for fusion pore expansion.


Sign in / Sign up

Export Citation Format

Share Document