scholarly journals Meiotic nuclear architecture in distinct mole vole hybrids with Robertsonian translocations: chromosome chains, stretched centromeres, and distorted recombination

2020 ◽  
Author(s):  
Sergey Matveevsky ◽  
Artemii Tretiakov ◽  
Irina Bakloushinskaya ◽  
Anna Kashintsova ◽  
Oxana Kolomiets

AbstractGenome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.Author summaryMeiosis is essential for sexual reproduction to produce haploid gametes. Prophase I represents a crucial meiotic stage because key processes such as chromosomal pairing, synapsis and desynapsis, recombination, and transcriptional silencing occur at this time. Alterations in each of these processes can activate meiotic checkpoints and lead to the elimination of meiocytes. Here we have shown that two groups of experimental hybrids, intraspecific and interspecific—which were heterozygous for 10 identical Robertsonian translocations—had pachytene irregularities and reduced recombination. However, intraspecific and interspecific hybrids exhibited different patterns of synaptonemal complex (SC) trivalent behavior. In the former, open SC trivalents comprised SC chains due to heterosynapsis of short arms of acrocentrics in early and mid-pachytene and were then able to form 2–4 and even 7 and 10 closed SC trivalents in the late pachytene and diplotene stages. In the second mole voles, SC trivalents had stretched centromeres of the metacentrics, and chains of SC trivalents were formed due to stretched centromeres of acrocentrics. Such compounds could not lead to the formation of separate closed SC trivalents. The distant ancestral points of chromosome attachment with a nuclear envelope in the heterozygous nuclei probably lead to stretching of SC trivalents and their centromeric regions, which can be regarded as an indicator of the reorganization of the intranuclear chromatin landscape. These abnormalities, which were revealed in in prophase I, contribute to a decrease the fertility of intraspecific mole voles and promote the sterility of interspecific mole voles.

2020 ◽  
Vol 21 (20) ◽  
pp. 7630
Author(s):  
Sergey Matveevsky ◽  
Artemii Tretiakov ◽  
Anna Kashintsova ◽  
Irina Bakloushinskaya ◽  
Oxana Kolomiets

Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 386 ◽  
Author(s):  
Sergey Matveevsky ◽  
Oxana Kolomiets ◽  
Aleksey Bogdanov ◽  
Elena Alpeeva ◽  
Irina Bakloushinskaya

Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.


Author(s):  
М.В. Андреева ◽  
М.И. Штаут ◽  
Т.М. Сорокина ◽  
Л.Ф. Курило ◽  
В.Б. Черных

Обследованы 19 мужчин с нарушением фертильности, носителей транслокаций rob(13;14) и rob(13;15). Показано, что нарушение репродуктивной функции обусловлено блоком сперматогенеза в профазе I мейоза, приводящего к азооспермии или олигоастенотератозооспермии и мужскому бесплодию. We examined 19 infertile men, carriers of translocations rob (13;14) and rob (13;15). We assume that fertility problems are resulted from spermatogenesis impairment because of meiotic arrest at prophase I stages, that leads to azoospermia or oligoastenoteratozoospermia and male infertility.


Chromosoma ◽  
2019 ◽  
Vol 128 (3) ◽  
pp. 369-383 ◽  
Author(s):  
Berta N. Vazquez ◽  
Cecilia S. Blengini ◽  
Yurdiana Hernandez ◽  
Lourdes Serrano ◽  
Karen Schindler

2000 ◽  
Vol 23 (3) ◽  
pp. 613-616 ◽  
Author(s):  
Márcia Denise da Paixão Scavone ◽  
Claudio Oliveira ◽  
Eduardo Bagagli ◽  
Fausto Foresti

The synaptonemal complex (SC) of three specimens of the nine-banded armadillo (Dasypus novemcinctus) was analyzed. Thirty-two bivalents (2n = 64) were observed, 31 of them being autosomes and one an XY sexual bivalent. Chromosome synapsis processes and nucleolus structure changes were analyzed in zygotene and pachytene cells, allowing a detailed description of the beginning of meiotic prophase in this species. There was complete synapsis of X and Y chromosomes. Some abnormalities in SC were observed in cells during zygotene and at the beginning of pachytene, but not in cells in the middle and late pachytene, suggesting the occurrence of synaptic adjustments in their SC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Covadonga Vara ◽  
Andreu Paytuví-Gallart ◽  
Yasmina Cuartero ◽  
Lucía Álvarez-González ◽  
Laia Marín-Gual ◽  
...  

AbstractThe spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1979-1993 ◽  
Author(s):  
Inna N Golubovskaya ◽  
Lisa C Harper ◽  
Wojciech P Pawlowski ◽  
Denise Schichnes ◽  
W Zacheus Cande

AbstractThe clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural  abnormalities of  meiosis  1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events.


Sign in / Sign up

Export Citation Format

Share Document