scholarly journals Ultrasound neuromodulation through nanobubble-actuated sonogenetics

2020 ◽  
Author(s):  
Xuandi Hou ◽  
Zhihai Qiu ◽  
Shashwati Kala ◽  
Jinghui Guo ◽  
Kin Fung Wong ◽  
...  

AbstractUltrasound neuromodulation is a promising new method to manipulate brain activity noninvasively. Here, we detail a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons displayed dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos only in the presence of GVs but not without. We identified mechanosensitive ion channels as important mediators of this effect, and neurons heterologously expressing the mechanosensitive MscL-G22S channel showed greater activation at lower acoustic pressure. This treatment scheme was also found not to induce significant cytotoxicity, apoptosis or membrane poration in treated cells. Altogether, we demonstrate a simple and effective method to achieve enhanced and more selective ultrasound neurostimulation.Graphical abstract

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


2021 ◽  
Author(s):  
Jung-uk Lee ◽  
Wookjin Shin ◽  
Yongjun Lim ◽  
Jungsil Kim ◽  
Woon Ryoung Kim ◽  
...  

Author(s):  
Ali Momin ◽  
Shahrzad Bahrampour ◽  
Hyun-Kee Min ◽  
Xin Chen ◽  
Xian Wang ◽  
...  

2021 ◽  
Author(s):  
Aymen Sadaka ◽  
Ana Ozuna ◽  
Richard Ortiz ◽  
Praveen Kulkarni ◽  
Clare Johnson ◽  
...  

Abstract Background: The phytocannabinoid cannabidiol (CBD) is a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged one hr later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements.Results: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. The pattern of ARAS connectivity closely overlapped with brain areas showing high levels N-acyl-phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) messenger RNA.Conclusion: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. The putative target and mechanism of action is NAPE-PLD the enzyme responsible for the biosynthesis of lipid signaling molecules like anandamide.


Sign in / Sign up

Export Citation Format

Share Document