scholarly journals Compensation Strategies for Bioelectric Signal Changes in Chronic Selective Nerve Cuff Recordings: A Simulation Study

2020 ◽  
Author(s):  
Stephen Sammut ◽  
Ryan G.L. Koh ◽  
José Zariffa

AbstractPeripheral nerve interfaces (PNIs) allow us to extract motor, sensory and autonomic information from the nervous system and use it as control signals in neuroprosthetic and neuromodulation applications. Recent efforts have aimed to improve the recording selectivity of PNIs, including by using spatiotemporal patterns from multi-contact nerve cuff electrodes as input to a convolutional neural network (CNN). Before such a methodology can be translated to humans, its performance in chronic implantation scenarios must be evaluated. In this simulation study, approaches were evaluated for maintaining selective recording performance in the presence of two chronic implantation challenges: the growth of encapsulation tissue and rotation of the nerve cuff electrode. Performance over time was examined in three conditions: training the CNN at baseline only, supervised re-training with explicitly labeled data at periodic intervals, and a semi-supervised self-learning approach. This study demonstrated that a selective recording algorithm trained at baseline will likely fail over time due to changes in signal characteristics resulting from the chronic challenges. Results further showed that periodically recalibrating the selective recording algorithm can maintain its performance over time, and that a self-learning approach has the potential to reduce the frequency of recalibration.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 506
Author(s):  
Stephen Sammut ◽  
Ryan G. L. Koh ◽  
José Zariffa

Peripheral nerve interfaces (PNIs) allow us to extract motor, sensory, and autonomic information from the nervous system and use it as control signals in neuroprosthetic and neuromodulation applications. Recent efforts have aimed to improve the recording selectivity of PNIs, including by using spatiotemporal patterns from multi-contact nerve cuff electrodes as input to a convolutional neural network (CNN). Before such a methodology can be translated to humans, its performance in chronic implantation scenarios must be evaluated. In this simulation study, approaches were evaluated for maintaining selective recording performance in the presence of two chronic implantation challenges: the growth of encapsulation tissue and rotation of the nerve cuff electrode. Performance over time was examined in three conditions: training the CNN at baseline only, supervised re-training with explicitly labeled data at periodic intervals, and a semi-supervised self-learning approach. This study demonstrated that a selective recording algorithm trained at baseline will likely fail over time due to changes in signal characteristics resulting from the chronic challenges. Results further showed that periodically recalibrating the selective recording algorithm could maintain its performance over time, and that a self-learning approach has the potential to reduce the frequency of recalibration.


Author(s):  
Laura M. Ferrari ◽  
Bruno Rodríguez-Meana ◽  
Alberto Bonisoli ◽  
Annarita Cutrone ◽  
Silvestro Micera ◽  
...  

Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called “Print and Shrink”, which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan A. Shulgach ◽  
Dylan W. Beam ◽  
Ameya C. Nanivadekar ◽  
Derek M. Miller ◽  
Stephanie Fulton ◽  
...  

AbstractDysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Sign in / Sign up

Export Citation Format

Share Document