scholarly journals The tubovesicular network in Plasmodium vivax liver-stage hypnozoites and schizonts associates with host aquaporin 3

2020 ◽  
Author(s):  
Kayla Sylvester ◽  
Steven P. Maher ◽  
Dora Posfai ◽  
Michael K. Tran ◽  
McKenna C. Crawford ◽  
...  

AbstractThe apicomplexan Plasmodium parasites replicate in the liver before causing malaria. P. vivax can also persist in the liver as dormant hypnozoites and cause relapses upon activation. The host water and solute channel aquaporin-3 (AQP3) has been shown to localize to the parasitophorous vacuole membrane (PVM) of P. vivax hypnozoites and liver schizonts, along with other Plasmodium species and stages. In this study, we use high-resolution microscopy to characterize temporal changes of the tubovesicular network (TVN), a PVM-derived network within the host cytosol, during P. vivax liver-stage infection. We demonstrate an unexpected role for the TVN in hypnozoites and reveal AQP3 associates with TVN-derived vesicles and extended membrane features. We further show AQP3 recruitment to Toxoplasma gondii. Our results highlight dynamic host-parasite interactions that occur in both dormant and replicating liver-stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of AQP3 in apicomplexan infection.

2015 ◽  
Vol 11 (3) ◽  
pp. e1004760 ◽  
Author(s):  
Paul-Christian Burda ◽  
Matthias A. Roelli ◽  
Marco Schaffner ◽  
Shahid M. Khan ◽  
Chris J. Janse ◽  
...  

2010 ◽  
Vol 9 (5) ◽  
pp. 784-794 ◽  
Author(s):  
Drew C. MacKellar ◽  
Matthew T. O'Neill ◽  
Ahmed S. I. Aly ◽  
John B. Sacci ◽  
Alan F. Cowman ◽  
...  

ABSTRACT Upregulated in infectious sporozoites gene 4 (UIS4) encodes a parasitophorous vacuole membrane protein expressed in the sporozoite and liver stages of rodent malaria parasites. Parasites that lack UIS4 arrest in early liver-stage development, and vaccination of mice with uis4 − sporozoites confers sterile protection against challenge with infectious sporozoites. Currently, it remains unclear whether an ortholog of UIS4 is carried in the human malaria parasite Plasmodium falciparum, although the gene PF10_0164 has been identified as a candidate ortholog for UIS4 on the basis of synteny and structural similarity of the encoded protein. We show that PF10_0164 is expressed in sporozoites and blood stages of P. falciparum, where it localizes to the parasitophorous vacuole, and is also exported to the host erythrocyte. PF10_0164 is refractory to disruption in asexual blood stages. Functional complementation was tested in Plasmodium yoelii by replacing the endogenous copy of UIS4 with PF10_0164. PF10_0164 localized to the parasitophorous vacuole membrane of liver stages, but transgenic parasites did not complete liver-stage development in mice. We conclude that PF10_0164 is a parasitophorous vacuole protein that is essential in asexual blood stages and that does not complement P. yoelii UIS4, and it is thus likely not a functional ortholog of UIS4.


Author(s):  
Kayla Sylvester ◽  
Steven P. Maher ◽  
Dora Posfai ◽  
Michael K. Tran ◽  
McKenna C. Crawford ◽  
...  

Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.


mBio ◽  
2021 ◽  
Author(s):  
Alicja M. Cygan ◽  
Pierre M. Jean Beltran ◽  
Alma G. Mendoza ◽  
Tess C. Branon ◽  
Alice Y. Ting ◽  
...  

Toxoplasma is an intracellular pathogen which resides and replicates inside a membrane-bound vacuole in infected cells. This vacuole is modified by both parasite and host proteins which participate in a variety of host-parasite interactions at this interface, including nutrient exchange, effector transport, and immune modulation.


2013 ◽  
Vol 110 (30) ◽  
pp. E2838-E2847 ◽  
Author(s):  
K. K. Hanson ◽  
A. S. Ressurreicao ◽  
K. Buchholz ◽  
M. Prudencio ◽  
J. D. Herman-Ornelas ◽  
...  

PLoS Biology ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. e3000473 ◽  
Author(s):  
Paolo Mesén-Ramírez ◽  
Bärbel Bergmann ◽  
Thuy Tuyen Tran ◽  
Matthias Garten ◽  
Jan Stäcker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document