scholarly journals Plasmodium falciparum PF10_0164 (ETRAMP10.3) Is an Essential Parasitophorous Vacuole and Exported Protein in Blood Stages

2010 ◽  
Vol 9 (5) ◽  
pp. 784-794 ◽  
Author(s):  
Drew C. MacKellar ◽  
Matthew T. O'Neill ◽  
Ahmed S. I. Aly ◽  
John B. Sacci ◽  
Alan F. Cowman ◽  
...  

ABSTRACT Upregulated in infectious sporozoites gene 4 (UIS4) encodes a parasitophorous vacuole membrane protein expressed in the sporozoite and liver stages of rodent malaria parasites. Parasites that lack UIS4 arrest in early liver-stage development, and vaccination of mice with uis4 − sporozoites confers sterile protection against challenge with infectious sporozoites. Currently, it remains unclear whether an ortholog of UIS4 is carried in the human malaria parasite Plasmodium falciparum, although the gene PF10_0164 has been identified as a candidate ortholog for UIS4 on the basis of synteny and structural similarity of the encoded protein. We show that PF10_0164 is expressed in sporozoites and blood stages of P. falciparum, where it localizes to the parasitophorous vacuole, and is also exported to the host erythrocyte. PF10_0164 is refractory to disruption in asexual blood stages. Functional complementation was tested in Plasmodium yoelii by replacing the endogenous copy of UIS4 with PF10_0164. PF10_0164 localized to the parasitophorous vacuole membrane of liver stages, but transgenic parasites did not complete liver-stage development in mice. We conclude that PF10_0164 is a parasitophorous vacuole protein that is essential in asexual blood stages and that does not complement P. yoelii UIS4, and it is thus likely not a functional ortholog of UIS4.

Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1289-1297 ◽  
Author(s):  
Alexander G. Maier ◽  
Melanie Rug ◽  
Matthew T. O'Neill ◽  
James G. Beeson ◽  
Matthias Marti ◽  
...  

Abstract A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte is devoid of protein transport machinery, the parasite provides infrastructure for trafficking across membranes it traverses. In this study, we show that the P falciparum skeleton-binding protein 1 (PfSBP1) is required for transport of PfEMP1 to the P falciparum–infected erythrocyte surface. We present evidence that PfSBP1 functions at the parasitophorous vacuole membrane to load PfEMP1 into Maurer clefts during formation of these structures. Furthermore, the major reactivity of antibodies from malaria-exposed multigravid women is directed toward PfEMP1 because this is abolished in the absence of PfSBP1.


2016 ◽  
Vol 84 (5) ◽  
pp. 1336-1345 ◽  
Author(s):  
Dorender A. Dankwa ◽  
Marshall J. Davis ◽  
Stefan H. I. Kappe ◽  
Ashley M. Vaughan

Plasmodiumparasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role ofPlasmodiumRBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of theMei2(Meiosisinhibited 2) RBP that is conserved amongPlasmodiumspecies (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-taggedPlasmodium yoeliiPlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout ofPlasMei2(plasmei2−) inP. yoeliionly affected late liver stage development. TheP. yoeliiplasmei2−liver stage size increased progressively until late in development, similar to wild-type parasite development. However,P. yoeliiplasmei2−liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity ofP. yoeliiplasmei2−liver stages became increasingly compromised late in development and the majority ofP. yoeliiplasmei2−underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block ofP. yoeliiplasmei2−transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of aPlasmodiumRBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms.


2021 ◽  
Author(s):  
Mikha Gabriela ◽  
Kathryn Matthews ◽  
Cas Boshoven ◽  
Betty Kouskousis ◽  
David Steer ◽  
...  

Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell’s physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins are processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite’s ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite’s ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101’s specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.


1992 ◽  
Vol 102 (3) ◽  
pp. 527-532 ◽  
Author(s):  
A.R. Dluzewski ◽  
G.H. Mitchell ◽  
P.R. Fryer ◽  
S. Griffiths ◽  
R.J. Wilson ◽  
...  

We have attempted to determine whether the parasitophorous vacuole membrane, in which the malaria parasite (merozoite) encapsulates itself when it enters a red blood cell, is derived from the host cell plasma membrane, as the appearance of the invasion process in the electron microscope has been taken to suggest, or from lipid material stored in the merozoite. We have incorporated into the red cell membrane a haptenic phospholipid, phosphatidylethanolamine, containing an NBD (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) group, substituted in the acyl chain, and allowed it to translocate into the inner bilayer leaflet. After invasion of these labelled cells by the parasite, Plasmodium falciparum, immuno-gold electron microscopy was used to follow the distribution of the labelled lipid; this was found to be overwhelmingly in favour of the host cell membrane relative to the parasitophorous vacuole. Merozoites of P. knowlesi were allowed to attach irreversibly to red cells without invasion, using the method of pretreatment with cytochalasin. The region of contact between the merozoite and the host cell membrane was in all cases devoid of the labelled phosphatidylethanolamine. These results lead us to infer that the parasitophorous vacuole membrane is derived wholly or partly from lipid preexisting in the merozoite.


Author(s):  
Izumi Taku ◽  
Tomohiro Hirai ◽  
Takashi Makiuchi ◽  
Naoaki Shinzawa ◽  
Shiroh Iwanaga ◽  
...  

Plasmodium falciparum extensively remodels human erythrocytes by exporting hundreds of parasite proteins. This remodeling is closely linked to the Plasmodium virulence-related functions and immune evasion. The N-terminal export signal named PEXEL (Plasmodium export element) was identified to be important for the export of proteins beyond the PVM, however, the issue of how these PEXEL-positive proteins are transported and regulated by Rab GTPases from the endoplasmic reticulum (ER) to the cell surface has remained poorly understood. Previously, we identified new aspects of the trafficking of N-myristoylated adenylate kinase 2 (PfAK2), which lacks the PEXEL motif and is regulated by the PfRab5b GTPase. Overexpression of PfRab5b suppressed the transport of PfAK2 to the parasitophorous vacuole membrane and PfAK2 was accumulated in the punctate compartment within the parasite. Here, we report the identification of PfRab5b associated proteins and dissect the pathway regulated by PfRab5b. We isolated two membrane trafficking GTPases PfArf1 and PfRab1b by coimmunoprecipitation with PfRab5b and via mass analysis. PfArf1 and PfRab1b are both colocalized with PfRab5b adjacent to the ER in the early erythrocytic stage. A super-resolution microgram of the indirect immunofluorescence assay using PfArf1 or PfRab1b- expressing parasites revealed that PfArf1 and PfRab1b are localized to different ER subdomains. We used a genetic approach to expresses an active or inactive mutant of PfArf1 that specifically inhibited the trafficking of PfAK2 to the parasitophorous vacuole membrane. While expression of PfRab1b mutants did not affect in the PfAK2 transport. In contrast, the export of the PEXEL-positive protein Rifin was decreased by the expression of the inactive mutant of PfRab1b or PfArf1. These data indicate that the transport of PfAK2 and Rifin were recognized at the different ER subdomain by the two independent GTPases: PfAK2 is sorted by PfArf1 into the pathway for the PV, and the export of Rifin might be sequentially regulated by PfArf1 and PfRab1b.


2018 ◽  
Vol 114 (3) ◽  
pp. 492a ◽  
Author(s):  
Matthias Garten ◽  
Josh R. Beck ◽  
Svetlana Glushakova ◽  
Armiyaw S. Nasamu ◽  
Jacquin C. Niles ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Kirsten K. Hanson ◽  
Sandra March ◽  
Shengyong Ng ◽  
Sangeeta N. Bhatia ◽  
Maria M. Mota

ABSTRACTPrior to invading nonreplicative erythrocytes,Plasmodiumparasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role duringPlasmodiumliver stage infection. Here, we show thatPlasmodiumparasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and completePlasmodiumliver stage development, which thus does not require cell cycle progression in the infected cellin vitro. Furthermore, murine hepatocytes remain quiescent throughoutin vivoinfection with eitherPlasmodium bergheiorPlasmodium yoelii, as doPlasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.


Sign in / Sign up

Export Citation Format

Share Document