scholarly journals Proximity-Labeling Reveals Novel Host and Parasite Proteins at the Toxoplasma Parasitophorous Vacuole Membrane

mBio ◽  
2021 ◽  
Author(s):  
Alicja M. Cygan ◽  
Pierre M. Jean Beltran ◽  
Alma G. Mendoza ◽  
Tess C. Branon ◽  
Alice Y. Ting ◽  
...  

Toxoplasma is an intracellular pathogen which resides and replicates inside a membrane-bound vacuole in infected cells. This vacuole is modified by both parasite and host proteins which participate in a variety of host-parasite interactions at this interface, including nutrient exchange, effector transport, and immune modulation.

2021 ◽  
Author(s):  
Alicja M. Cygan ◽  
Pierre M. Jean Beltran ◽  
Tess C. Branon ◽  
Alice Y. Ting ◽  
Steven A. Carr ◽  
...  

AbstractToxoplasma gondii is a ubiquitous, intracellular parasite that envelopes its parasitophorous vacuole with a protein-laden membrane (PVM). The PVM is critical for interactions with the infected host cell such as nutrient transport and immune defense. Only a few parasite and host proteins have so far been identified on the host-cytosolic side of the PVM. We report here the use of human foreskin fibroblasts expressing the proximity-labeling enzyme miniTurbo, fused to a domain that targets it to this face of the PVM, in combination with quantitative proteomics to specifically identify proteins present at this crucial interface. Out of numerous human and parasite proteins with candidate PVM localization, we validate three novel parasite proteins (TGGT1_269950, TGGT1_215360, and TGGT1_217530) and four new host proteins (PDCD6IP/ALIX, PDCD6, CC2D1A, and MOSPD2) as localized to the PVM in infected human cells through immunofluorescence microscopy. These results significantly expand our knowledge of proteins present at the PVM and, given that three of the validated host proteins are components of the ESCRT machinery, they further suggest that novel biology is operating at this crucial host-pathogen interface.ImportanceToxoplasma is an intracellular pathogen which resides and replicates inside a membrane-bound vacuole in infected cells. This vacuole is modified by both parasite and host proteins which participate in a variety of host-parasite interactions at this interface, including nutrient exchange, effector transport, and immune modulation. Only a small number of parasite and host proteins present at the vacuolar membrane and exposed to the host cytosol have thus far been identified. Here we report the identification of several novel parasite and host proteins present at the vacuolar membrane using enzyme-catalyzed proximity-labeling, significantly increasing our knowledge of the molecular players present and novel biology occurring at this crucial interface.


2020 ◽  
Author(s):  
Kayla Sylvester ◽  
Steven P. Maher ◽  
Dora Posfai ◽  
Michael K. Tran ◽  
McKenna C. Crawford ◽  
...  

AbstractThe apicomplexan Plasmodium parasites replicate in the liver before causing malaria. P. vivax can also persist in the liver as dormant hypnozoites and cause relapses upon activation. The host water and solute channel aquaporin-3 (AQP3) has been shown to localize to the parasitophorous vacuole membrane (PVM) of P. vivax hypnozoites and liver schizonts, along with other Plasmodium species and stages. In this study, we use high-resolution microscopy to characterize temporal changes of the tubovesicular network (TVN), a PVM-derived network within the host cytosol, during P. vivax liver-stage infection. We demonstrate an unexpected role for the TVN in hypnozoites and reveal AQP3 associates with TVN-derived vesicles and extended membrane features. We further show AQP3 recruitment to Toxoplasma gondii. Our results highlight dynamic host-parasite interactions that occur in both dormant and replicating liver-stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of AQP3 in apicomplexan infection.


Parasitology ◽  
1991 ◽  
Vol 103 (3) ◽  
pp. 321-329 ◽  
Author(s):  
A. Achbarou ◽  
O. Mercereau-Puijalon ◽  
A. Sadak ◽  
B. Fortier ◽  
M. A. Leriche ◽  
...  

The biosynthesis and fate of 4 different dense granule proteins ofToxoplasma gondiiwere studied with 3 monoclonal antibodies raised against tachyzoites and 1 polyclonal antibody raised against a recombinant protein. These proteins have the following molecular weights: 27 kDa (GRA 1), 28 kDa (GRA 2), 30 kDa (GRA 3) and 40 kDa (GRA 4). All four proteins were found in dense granules by immunoelectron microscopy; inT. gondii-infected cells, they were found in the vacuolar network but, in addition, GRA 3 was also detected on the parasitophorous vacuole membrane. Therefore, dense granule contents undergo differential targeting when exocytosed in the parasitophorous vacuole. Metabolic labelling and immunoprecipitation showed that GRA 2 and GRA 3 were processed from lower molecular weight precursors, and that GRA 2 and GRA 4 incorporated [3H] glucosamine and are thus likely to be glycosylated.


1998 ◽  
Vol 111 (11) ◽  
pp. 1467-1475 ◽  
Author(s):  
K. Lingelbach ◽  
K.A. Joiner

Plasmodium and Toxoplasma belong to a group of unicellular parasites which actively penetrate their respective mammalian host cells. During the process of invasion, they initiate the formation of a membrane, the so-called parasitophorous vacuolar membrane, which surrounds the intracellular parasite and which differs substantially from endosomal membranes or the membrane of phagolysosomes. The biogenesis and the maintenance of the vacuolar membrane are closely related to the peculiar cellular organization of these parasites and are unique phenomena in cell biology. Here we compare biological similarities and differences between the two parasites, with respect to: (i) the formation, (ii) the maintenance, and (iii) the biological role of the vacuolar membrane. We conclude that most differences between the organisms primarily reflect the different biosynthetic capacities of the host cells they invade.


2011 ◽  
Vol 79 (11) ◽  
pp. 4559-4568 ◽  
Author(s):  
Jeffrey Mital ◽  
Ted Hackstadt

ABSTRACTThe bacterial obligate intracellular pathogenChlamydia trachomatisreplicates within a membrane-bound vacuole termed the inclusion. From within this protective environment, chlamydiae usurp numerous functions of the host cell to promote chlamydial survival and replication. Here we utilized a small interfering RNA (siRNA)-based screening protocol designed to identify host proteins involved in the trafficking of sphingomyelin to the chlamydial inclusion. Twenty-six host proteins whose deficiency significantly decreased sphingomyelin trafficking to the inclusion and 16 proteins whose deficiency significantly increased sphingomyelin trafficking to the inclusion were identified. The reduced sphingomyelin trafficking caused by downregulation of the Src family tyrosine kinase Fyn was confirmed in more-detailed analyses. Fyn silencing did not alter sphingomyelin synthesis or trafficking in the absence of chlamydial infection but reduced the amount of sphingomyelin trafficked to the inclusion in infected cells, as determined by two independent quantitative assays. Additionally, inhibition of Src family kinases resulted in increased cellular retention of sphingomyelin and significantly decreased incorporation into elementary bodies of bothC. trachomatisandChlamydophila caviae.


1997 ◽  
Vol 110 (2) ◽  
pp. 191-200 ◽  
Author(s):  
H.L. Collins ◽  
U.E. Schaible ◽  
J.D. Ernst ◽  
D.G. Russell

The eukaryotic intracellular pathogen Leishmania mexicana resides inside macrophages contained within a membrane bound parasitophorous vacuole which, as it matures, acquires the characteristics of a late endosomal compartment. This study reports the selectivity of fusion of this compartment with other particle containing vacuoles. Phagosomes containing zymosan or live Listeria monocytogenes rapidly fused with L. mexicana parasitophorous vacuoles, while those containing latex beads or heat killed L. monocytogenes failed to do so. Fusigenicity of phagosomes was not primarily dependent on the receptor utilized for ingestion, as opsonization with defined ligands could not overcome the exclusion of either latex beads or heat killed organisms. However modulation of intracellular pH by pharmacological agents such as chloroquine and ammonium chloride increased delivery of live Listeria and also induced transfer of previously excluded particles. The absence of fusion correlated with the acquisition of annexin I, a putative lysosomal targeting, molecule, on the phagosome membrane. We propose that the acquisition of cellular membrane constituents such as annexin I during phagosome maturation can ultimately direct the fusion pathway of the vesicles formed and have described a model system to further document changes in vesicle fusigenicity within cells.


2017 ◽  
Vol 216 (12) ◽  
pp. 4235-4254 ◽  
Author(s):  
Julia D. Romano ◽  
Sabrina J. Nolan ◽  
Corey Porter ◽  
Karen Ehrenman ◽  
Eric J. Hartman ◽  
...  

Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release.


2020 ◽  
Author(s):  
Geetha Kannan ◽  
Pariyamon Thaprawat ◽  
Tracey L. Schultz ◽  
Vern B. Carruthers

ABSTRACTToxoplasma gondii is a protozoan parasite that persists in the central nervous system as intracellular chronic stage bradyzoites that are encapsulated by a thick cyst wall. While the cyst wall separates bradyzoites from the host cytosol, it has been posited that small solutes can traverse the cyst wall to sustain bradyzoites. Recently it was found that host cytosolic macromolecules can cross the parasitophorous vacuole and are ingested and digested by actively replicating acute stage tachyzoites. However, the extent to which bradyzoites have an active ingestion pathway remained unknown. To interrogate this, we modified previously published protocols that look at tachyzoite acquisition and digestion of host proteins by measuring parasite accumulation of a host-expressed reporter protein after impairment of an endolysosomal protease (Cathepsin Protease L, CPL). Using two cystogenic parasite strains (ME49 and Pru), we demonstrate that T. gondii bradyzoites can ingest host-derived cytosolic mCherry. Bradyzoites acquire host mCherry within 4 hours of invasion and post-cyst wall formation. This study provides direct evidence that host macromolecules can be internalized by T. gondii bradyzoites across the cyst wall in infected cells.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Geetha Kannan ◽  
Pariyamon Thaprawat ◽  
Tracey L. Schultz ◽  
Vern B. Carruthers

ABSTRACT Toxoplasma gondii is a protozoan parasite that persists in the central nervous system as intracellular chronic-stage bradyzoites that are encapsulated by a thick cyst wall. While the cyst wall separates bradyzoites from the host cytosol, it has been posited that small solutes can traverse the cyst wall to sustain bradyzoites. Recently, it was found that host cytosolic macromolecules can cross the parasitophorous vacuole and are ingested and digested by actively replicating acute-stage tachyzoites. However, the extent to which bradyzoites have an active ingestion pathway remained unknown. To interrogate this, we modified previously published protocols that look at tachyzoite acquisition and digestion of host proteins by measuring parasite accumulation of a host-expressed reporter protein after impairment of an endolysosomal protease (cathepsin protease L [CPL]). Using two cystogenic parasite strains (ME49 and Pru), we demonstrate that T. gondii bradyzoites can ingest host-derived cytosolic mCherry. Bradyzoites acquire host mCherry within 4 h of invasion and after cyst wall formation. This study provides direct evidence that host macromolecules can be internalized by T. gondii bradyzoites across the cyst wall in infected cells. IMPORTANCE Chronic infection of humans with Toxoplasma gondii is common, but little is known about how this intracellular parasite obtains the resources that it needs to persist indefinitely inside neurons and muscle cells. Here, we provide evidence that the chronic-stage form of T. gondii can internalize proteins from the cytosol of infected cells despite residing within an intracellular cyst that is surrounded by a cyst wall. We also show that accumulation of host-derived protein within the chronic-stage parasites is enhanced by disruption of a parasite protease, suggesting that such protein is normally degraded to generate peptides and amino acids. Taken together, our findings imply that chronic-stage T. gondii can ingest and digest host proteins, potentially to support its persistence.


2008 ◽  
Vol 76 (11) ◽  
pp. 4865-4875 ◽  
Author(s):  
Michael E. Rome ◽  
Josh R. Beck ◽  
Jay M. Turetzky ◽  
Paul Webster ◽  
Peter J. Bradley

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that resides in the cytoplasm of its host in a unique membrane-bound vacuole known as the parasitophorous vacuole (PV). The membrane surrounding the parasite is remodeled by the dense granules, secretory organelles that release an array of proteins into the vacuole and to the PV membrane (PVM). Only a small portion of the protein constituents of the dense granules have been identified, and little is known regarding their roles in infection or how they are trafficked within the infected host cell. In this report, we identify a novel secreted dense granule protein, GRA14, and show that it is targeted to membranous structures within the vacuole known as the intravacuolar network and to the vacuolar membrane surrounding the parasite. We disrupted GRA14 and exploited the knockout strain to show that GRA14 can be transferred between vacuoles in a coinfection experiment with wild-type parasites. We also show that GRA14 has an unexpected topology in the PVM with its C terminus facing the host cytoplasm and its N terminus facing the vacuolar lumen. These findings have important implications both for the trafficking of GRA proteins to their ultimate destinations and for expectations of functional domains of GRA proteins at the host-parasite interface.


Sign in / Sign up

Export Citation Format

Share Document