scholarly journals MathFeature: Feature Extraction Package for Biological Sequences Based on Mathematical Descriptors

2020 ◽  
Author(s):  
Robson P. Bonidia ◽  
Danilo S. Sanches ◽  
André C.P.L.F. de Carvalho

AbstractMachine learning algorithms have been very successfully applied to extract new and relevant knowledge from biological sequences. However, the predictive performance of these algorithms is largely affected by how the sequences are represented. Thereby, the main challenge is how to numerically represent a biological sequence in a numeric vector with an efficient mathematical expression. Several feature extraction techniques have been proposed for biological sequences, where most of them are available in feature extraction packages. However, there are relevant approaches that are not available in existing packages, techniques based on mathematical descriptors, e.g., Fourier, entropy, and graphs. Therefore, this paper presents a new package, named MathFeature, which implements mathematical descriptors able to extract relevant information from biological sequences. MathFeature provides 20 approaches based on several studies found in the literature, e.g., multiple numeric mappings, genomic signal processing, chaos game theory, entropy, and complex networks. MathFeature also allows the extraction of alternative features, complementing the existing packages.Availability and implementationMathFeature is freely available at https://bonidia.github.io/MathFeature/ or https://github.com/Bonidia/[email protected], [email protected]

2020 ◽  
Author(s):  
Robson Parmezan Bonidia ◽  
Lucas Dias Hiera Sampaio ◽  
Douglas Silva Domingues ◽  
Alexandre Rossi Paschoal ◽  
Fabrício Martins Lopes ◽  
...  

AbstractThe number of available biological sequences has increased significantly in recent years due to various genomic sequencing projects, creating a huge volume of data. Consequently, new computational methods are needed to analyze and extract information from these sequences. Machine learning methods have shown broad applicability in computational biology and bioinformatics. The utilization of machine learning methods has helped to extract relevant information from various biological datasets. However, there are still several obstacles that motivate new algorithms and pipeline proposals, mainly involving feature extraction problems, in which extracting significant discriminatory information from a biological set is challenging. Considering this, our work proposes to study and analyze a feature extraction pipeline based on mathematical models (Numerical Mapping, Fourier, Entropy, and Complex Networks). As a case study, we analyze Long Non-Coding RNA sequences. Moreover, we divided this work into two studies, e.g., (I) we assessed our proposal with the most addressed problem in our review, e.g., lncRNA vs. mRNA; (II) we tested its generalization on different classification problems, e.g., circRNA vs. lncRNA. The experimental results demonstrated three main contributions: (1) An in-depth study of several mathematical models; (2) a new feature extraction pipeline and (3) its generalization and robustness for distinct biological sequence classification.


2018 ◽  
Author(s):  
Kathleen M. Chen ◽  
Evan M. Cofer ◽  
Jian Zhou ◽  
Olga G. Troyanskaya

AbstractTo enable the application of deep learning in biology, we present Selene (https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy development, training, and application of deep learning model architectures for any biological sequences. We demonstrate how Selene allows researchers to easily train a published architecture on new data, develop and evaluate a new architecture, and use a trained model to answer biological questions of interest.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Artur Yakimovich

ABSTRACT Artur Yakimovich works in the field of computational virology and applies machine learning algorithms to study host-pathogen interactions. In this mSphere of Influence article, he reflects on two papers “Holographic Deep Learning for Rapid Optical Screening of Anthrax Spores” by Jo et al. (Y. Jo, S. Park, J. Jung, J. Yoon, et al., Sci Adv 3:e1700606, 2017, https://doi.org/10.1126/sciadv.1700606) and “Bacterial Colony Counting with Convolutional Neural Networks in Digital Microbiology Imaging” by Ferrari and colleagues (A. Ferrari, S. Lombardi, and A. Signoroni, Pattern Recognition 61:629–640, 2017, https://doi.org/10.1016/j.patcog.2016.07.016). Here he discusses how these papers made an impact on him by showcasing that artificial intelligence algorithms can be equally applicable to both classical infection biology techniques and cutting-edge label-free imaging of pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imogen Schofield ◽  
David C. Brodbelt ◽  
Noel Kennedy ◽  
Stijn J. M. Niessen ◽  
David B. Church ◽  
...  

AbstractCushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to predict a future diagnosis of Cushing's syndrome, using structured clinical data from the VetCompass programme in the UK. Dogs suspected of having Cushing's syndrome were included in the analysis and classified based on their final reported diagnosis within their clinical records. Demographic and clinical features available at the point of first suspicion by the attending veterinarian were included within the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome diagnoses, with good predictive performance. The LASSO penalised regression model indicated the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New approaches using these methods could support clinical decision-making and contribute to improved diagnosis of Cushing’s syndrome in dogs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengmao Zhou ◽  
Junhong Hu ◽  
Ying Wang ◽  
Mu-Huo Ji ◽  
Jianhua Tong ◽  
...  

AbstractTo explore the predictive performance of machine learning on the recurrence of patients with gastric cancer after the operation. The available data is divided into two parts. In particular, the first part is used as a training set (such as 80% of the original data), and the second part is used as a test set (the remaining 20% of the data). And we use fivefold cross-validation. The weight of recurrence factors shows the top four factors are BMI, Operation time, WGT and age in order. In training group:among the 5 machine learning models, the accuracy of gbm was 0.891, followed by gbm algorithm was 0.876; The AUC values of the five machine learning algorithms are from high to low as forest (0.962), gbm (0.922), GradientBoosting (0.898), DecisionTree (0.790) and Logistic (0.748). And the precision of the forest is the highest 0.957, followed by the GradientBoosting algorithm (0.878). At the same time, in the test group is as follows: the highest accuracy of Logistic was 0.801, followed by forest algorithm and gbm; the AUC values of the five algorithms are forest (0.795), GradientBoosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine learning algorithms, the highest precision rate of Logistic is 1.000, followed by the gbm (0.487). Machine learning can predict the recurrence of gastric cancer patients after an operation. Besides, the first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, WGT and age.


Author(s):  
Guillermo Restrepo

: The deluge of biological sequences ranging from those of proteins, DNA and RNA to genomes has increased the models for their representation, which are further used to contrast those sequences. Here we present a brief bibliometric description of the research area devoted to representation of biological sequences and highlight the semiotic reaches of this process. Finally, we argue that this research area needs further research according to the evolution of mathematical chemistry and its drawbacks are required to be overcome.


Sign in / Sign up

Export Citation Format

Share Document