scholarly journals XlinkCyNET: a Cytoscape application for visualization of protein interaction networks based on cross-linking mass-spectrometry identifications

2020 ◽  
Author(s):  
Diogo Borges Lima ◽  
Ying Zhu ◽  
Fan Liu

ABSTRACTSoftware tools that allow visualization and analysis of protein interaction networks are essential for studies in systems biology. One of the most popular network visualization tools in biology is Cytoscape, which offers a large selection of plugins for interpretation of protein interaction data. Chemical cross-linking coupled to mass spectrometry (XL-MS) is an increasingly important source for such interaction data, but there are currently no Cytoscape tools to analyze XL-MS results. In light of the suitability of Cytoscape platform but also to expand its toolbox, here we introduce XlinkCyNET, an open-source Cytoscape Java plugin for exploring large-scale XL-MS-based protein interaction networks. XlinkCyNET offers rapid and easy visualization of intra and intermolecular cross-links and the locations of protein domains in a rectangular bar style, allowing subdomain-level interrogation of the interaction network. XlinkCyNET is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/xlinkcynet and at https://www.theliulab.com/software/xlinkcynet.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1522
Author(s):  
Angela U. Makolo ◽  
Temitayo A. Olagunju

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained from high-throughput experiments. However, these high-throughput methods are known to produce very high rates of false positive and negative interactions. To construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed.A weighted interaction graph of Saccharomyces Cerevisiae was constructed. The weights were obtained using a Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model.We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. Cerevisiae.


Author(s):  
Hugo Willy

Recent breakthroughs in high throughput experiments to determine protein-protein interaction have generated a vast amount of protein interaction data. However, most of the experiments could only answer the question of whether two proteins interact but not the question on the mechanisms by which proteins interact. Such understanding is crucial for understanding the protein interaction of an organism as a whole (the interactome) and even predicting novel protein interactions. Protein interaction usually occurs at some specific sites on the proteins and, given their importance, they are usually well conserved throughout the evolution of the proteins of the same family. Based on this observation, a number of works on finding protein patterns/motifs conserved in interacting proteins have emerged in the last few years. Such motifs are collectively termed as the interaction motifs. This chapter provides a review on the different approaches on finding interaction motifs with a discussion on their implications, potentials and possible areas of improvements in the future.


Author(s):  
Diogo Borges Lima ◽  
Ying Zhu ◽  
Fan Liu

Abstract We present a high-performance app for Cytoscape to visualize cross-linking mass-spectrometry (XL-MS) data. XlinkCyNET is an open-source Java plugin that generates residue-to-residue connections provided by XL-MS in protein interaction networks. Importantly, it provides an interactive interface for the exploration of cross-links and offers various options to display protein domains. XlinkCyNET works well in complex networks containing thousands of proteins.


2020 ◽  
Vol 3 (3) ◽  
pp. 191-200
Author(s):  
M. Syamsuddin Wisnubroto ◽  
Marsudi Siburian ◽  
Febri Dwi Irawati

Proteins interact with other proteins, DNA, and other molecules, forming large-scale protein interaction networks and for easy analysis, clustering methods are needed. Regularized Markov clustering algorithm is an improvement of MCL where operations on expansion are replaced by new operations that update the flow distributions of each node. But to reduce the weaknesses of the RMCL optimization, Pigeon Inspired Optimization Algorithm (PIO) is used to replace the inflation parameters. The simulation results of IPC SARS-Cov-2 (COVID-19) inflation parameters  get the result of 42 proteins as the center of the cluster and 8 protein pairs interacting with each other. Proteins of COVID-19 that interact with 20 or more proteins are ORF8, NSP13, NSP7, M, N, ORF9C, NSP8, and NSP1. Their interactions might be used as a target for drug research.


2019 ◽  
Author(s):  
Michael Götze ◽  
Claudio Iacobucci ◽  
Christian Ihling ◽  
Andrea Sinz

ABSTRACTWe present a cross-linking/mass spectrometry (XLMS) workflow for performing proteome-wide cross-linking analyses within one week. The workflow is based on the commercially available MS-cleavable cross-linker disuccinimidyl dibutyric urea (DSBU) and can be employed by every lab having access to a mass spectrometer with tandem MS capabilities. We provide an updated version 2.0 of the freeware software tool MeroX, available at www.StavroX.com, that allows conducting fully automated and reliable studies delivering insights into protein-protein interaction networks and protein conformations at the proteome level. We exemplify our optimized workflow for mapping protein-protein interaction networks in Drosophila melanogaster embryos on a system-wide level. From cross-linked Drosophila embryo extracts, we detected 18,037 cross-link spectrum matches corresponding to 5,129 unique cross-linked residues in biological triplicate experiments at 5% FDR (3,098 at 1% FDR). Among these, 1,237 interprotein cross-linking sites were identified that contain valuable information on protein-protein interactions. The remaining 3,892 intra-protein cross-links yield information on conformational changes of proteins in their cellular environment.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Luke Hakes ◽  
David L. Robertson ◽  
Stephen G. Oliver ◽  
Simon C. Lovell

By combining crystallographic information with protein-interaction data obtained through traditional experimental means, this paper determines the most appropriate method for generating protein-interaction networks that incorporate data derived from protein complexes. We propose that a combined method should be considered; in which complexes composed of five chains or less are decomposed using the matrix model, whereas the spoke model is used to derive pairwise interactions for those with six chains or more. The results presented here should improve the accuracy and relevance of studies investigating the topology of protein-interaction networks.


Sign in / Sign up

Export Citation Format

Share Document