scholarly journals A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals structural genome variation in rainbow trout

2020 ◽  
Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C. Waldbieser ◽  
Ramey C. Youngblood ◽  
Paul A. Wheeler ◽  
...  

AbstractCurrently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2N=64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.Article SummaryA de-novo genome assembly was generated for the Arlee homozygous line of rainbow trout to enable identification and characterization of genome variants towards developing a rainbow trout pan-genome reference. The new assembly was generated using the PacBio sequencing technology and scaffolding with Hi-C contact maps and Bionano optical mapping. A contiguous genome assembly was obtained, with the contig and scaffold N50 over 15.6 Mb and 39 Mb, respectively, and 95% of the assembly in chromosome sequences. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes.

Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C Waldbieser ◽  
Ramey C Youngblood ◽  
Paul A Wheeler ◽  
...  

Abstract Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


Author(s):  
Natascha van Lieshout ◽  
Martijn van Kaauwen ◽  
Linda Kodde ◽  
Paul Arens ◽  
Marinus J M Smulders ◽  
...  

Abstract Chrysanthemum is among the top ten cut, potted and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences and a genetic map, we assembled 3.1 Gb of its sequence into 9 pseudochromosomes, with an N50 of 330 Mb and BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95 074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution and history.


2017 ◽  
Author(s):  
JR Tyson ◽  
NJ O’Neil ◽  
M Jain ◽  
HE Olsen ◽  
P Hieter ◽  
...  

ABSTRACTAdvances in 3rd generation sequencing have opened new possibilities for ‘benchtop’ whole genome sequencing. The MinION is a portable device that uses nanopore technology and can sequence long DNA molecules. MinION long reads are well suited for sequencing and de novo assembly of complex genomes with large repetitive elements. Long reads also facilitate the identification of complex genomic rearrangements such as those observed in tumor genomes. To assess the feasibility of the de novo assembly of large complex genomes using both MinION and Illumina platforms, we sequenced the genome of a Caenorhabditis elegans strain that contains a complex acetaldehyde-induced rearrangement and a biolistic bombardment-mediated insertion of a GFP containing plasmid. Using ∼5.8 gigabases of MinION sequence data, we were able to assemble a C. elegans genome containing 145 contigs (N50 contig length = 1.22 Mb) that covered >99% of the 100,286,401 bp reference genome. In contrast, using ∼8.04 gigabases of Illumina sequence data, we were able to assemble a C. elegans genome in 38,645 contigs (N50 contig length = ∼26 kb) containing 117 Mb. From the MinION genome assembly we identified the complex structures of both the acetaldehyde-induced mutation and the biolistic-mediated insertion. To date, this is the largest genome to be assembled exclusively from MinION data and is the first demonstration that the long reads of MinION sequencing can be used for whole genome assembly of large (100 Mb) genomes and the elucidation of complex genomic rearrangements.


2021 ◽  
Author(s):  
Xiao Luo ◽  
Xiongbin Kang ◽  
Alexander Schoenhuth

Haplotype-aware diploid genome assembly is crucial in genomics, precision medicine, and many other disciplines. Long-read sequencing technologies have greatly improved genome assembly thanks to advantages of read length. However, current long-read assemblers usually introduce disturbing biases or fail to capture the haplotype diversity of the diploid genome. Here, we present phasebook, a novel approach for reconstructing the haplotypes of diploid genomes from long reads de novo. Benchmarking experiments demonstrate that our method outperforms other approaches in terms of haplotype coverage by large margins, while preserving competitive performance or even achieving advantages in terms of all other aspects relevant for genome assembly.


2020 ◽  
Author(s):  
Graham Etherington

De novo assembly of 49 mustelid whole mitochondrial genomes


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Chen ◽  
Yixin Zhang ◽  
Amy Y. Wang ◽  
Min Gao ◽  
Zechen Chong

AbstractLong-read de novo genome assembly continues to advance rapidly. However, there is a lack of effective tools to accurately evaluate the assembly results, especially for structural errors. We present Inspector, a reference-free long-read de novo assembly evaluator which faithfully reports types of errors and their precise locations. Notably, Inspector can correct the assembly errors based on consensus sequences derived from raw reads covering erroneous regions. Based on in silico and long-read assembly results from multiple long-read data and assemblers, we demonstrate that in addition to providing generic metrics, Inspector can accurately identify both large-scale and small-scale assembly errors.


2018 ◽  
Author(s):  
Simon Roux ◽  
Gareth Trubl ◽  
Danielle Goudeau ◽  
Nandita Nath ◽  
Estelle Couradeau ◽  
...  

Background. Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. Methods. Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. Results. Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥ 10kb by 10 to 100-fold for low input metagenomes. Conclusions. PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.


2019 ◽  
Author(s):  
Kenta Shirasawa ◽  
Akifumi Azuma ◽  
Fumiya Taniguchi ◽  
Toshiya Yamamoto ◽  
Akihiko Sato ◽  
...  

AbstractThis study presents the first genome sequence of an interspecific grape hybrid, ‘Shine Muscat’ (Vitis labruscana × V. vinifera), an elite table grape cultivar bred in Japan. The complexity of the genome structure, arising from the interspecific hybridization, necessitated the use of a sophisticated genome assembly pipeline with short-read genome sequence data. The resultant genome assemblies consisted of two types of sequences: a haplotype-phased sequence of the highly heterozygous genomes and an unphased sequence representing a “haploid” genome. The unphased sequences spanned 490.1 Mb in length, 99.4% of the estimated genome size, with 8,696 scaffold sequences with an N50 length of 13.2 Mb. The phased sequences had 15,650 scaffolds spanning 1.0 Gb with N50 of 4.2 Mb. The two sequences comprised 94.7% and 96.3% of the core eukaryotic genes, indicating that the entire genome of ‘Shine Muscat’ was represented. Examination of genome structures revealed possible genome rearrangements between the genomes of ‘Shine Muscat’ and a V. vinifera line. Furthermore, full-length transcriptome sequencing analysis revealed 13,947 gene loci on the ‘Shine Muscat’ genome, from which 26,199 transcript isoforms were transcribed. These genome resources provide new insights that could help cultivation and breeding strategies produce more high-quality table grapes such as ‘Shine Muscat’.


GigaScience ◽  
2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Eugenie C Yen ◽  
Shane A McCarthy ◽  
Juan A Galarza ◽  
Tomas N Generalovic ◽  
Sarah Pelan ◽  
...  

ABSTRACT Background Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly, enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth (Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism. Findings We produced a high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family (F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous (mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most genetically differentiated with the lowest genetic diversity. Conclusions We present the first invertebrate genome to be assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into the geographic population structure of A. plantaginis.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Willem de Koning ◽  
Milad Miladi ◽  
Saskia Hiltemann ◽  
Astrid Heikema ◽  
John P Hays ◽  
...  

Abstract Background Long-read sequencing can be applied to generate very long contigs and even completely assembled genomes at relatively low cost and with minimal sample preparation. As a result, long-read sequencing platforms are becoming more popular. In this respect, the Oxford Nanopore Technologies–based long-read sequencing “nanopore" platform is becoming a widely used tool with a broad range of applications and end-users. However, the need to explore and manipulate the complex data generated by long-read sequencing platforms necessitates accompanying specialized bioinformatics platforms and tools to process the long-read data correctly. Importantly, such tools should additionally help democratize bioinformatics analysis by enabling easy access and ease-of-use solutions for researchers. Results The Galaxy platform provides a user-friendly interface to computational command line–based tools, handles the software dependencies, and provides refined workflows. The users do not have to possess programming experience or extended computer skills. The interface enables researchers to perform powerful bioinformatics analysis, including the assembly and analysis of short- or long-read sequence data. The newly developed “NanoGalaxy" is a Galaxy-based toolkit for analysing long-read sequencing data, which is suitable for diverse applications, including de novo genome assembly from genomic, metagenomic, and plasmid sequence reads. Conclusions A range of best-practice tools and workflows for long-read sequence genome assembly has been integrated into a NanoGalaxy platform to facilitate easy access and use of bioinformatics tools for researchers. NanoGalaxy is freely available at the European Galaxy server https://nanopore.usegalaxy.eu with supporting self-learning training material available at https://training.galaxyproject.org.


Sign in / Sign up

Export Citation Format

Share Document