scholarly journals Cholesteryl Hemiazelate Induces Lysosome Dysfunction and Exocytosis in Macrophages

2021 ◽  
Author(s):  
Neuza Domingues ◽  
Rita Diogo Almeida Calado ◽  
Patrícia H. Brito ◽  
Rune Matthiesen ◽  
José Ramalho ◽  
...  

ABSTRACTOBJECTIVEA key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins in lysosomes. This event culminates with the loss of cell homeostasis, inflammation and cell death. In this study we propose to identify the chemical etiological factors and understanding the molecular and cellular mechanisms responsible for the impairment of lysosome function in macrophages.APPROACH AND RESULTSUsing shotgun lipidomics we have discovered that a family of oxidized lipids (cholesteryl hemiesters, ChE), end products of oxidation of polyunsaturated cholesteryl esters, occurs at higher concentrations in the plasma of two cohorts of cardiovascular disease patients than in the plasma of a control cohort. Macrophages exposed to the most prevalent ChE, cholesteryl hemiazelate (ChA) exhibit lysosome enlargement, peripheral lysosomal positioning, lysosome dysfunction and lipidosis which are irreversible. The transcriptomic profile of macrophages exposed to ChA indicates that the lysosome pathway is deeply affected and is well correlated with lysosome phenotypic and functional changes. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences to the pathology.CONCLUSIONWe identify ChA not only as one of the molecules involved in the etiology of irreversible lysosome dysfunction culminating with lipidosis but also as a promoter of exocytosis of the dysfunctional lysosomes. The latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.

FEBS Letters ◽  
1997 ◽  
Vol 401 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Marco Lucarelli ◽  
Massimo Gennarelli ◽  
Patrizia Cardelli ◽  
Giuseppe Novelli ◽  
Sigfrido Scarpa ◽  
...  

1999 ◽  
Vol 77 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Louise Brissette ◽  
Marie-Claude Charest ◽  
Louise Falstrault ◽  
Julie Lafond ◽  
David Rhainds ◽  
...  

Selective uptake of cholesteryl esters (CE) from lipoproteins by cells has been extensively studied with high density lipoproteins (HDL). It is only recently that such a mechanism has been attributed to intermediate and low density lipoproteins (IDL and LDL). Here, we compare the association of proteins and CE from very low density lipoproteins (VLDL), IDL, LDL and HDL3 to HepG2 cells. These lipoproteins were either labelled in proteins with 125I or in CE with 3H-cholesteryl oleate. We show that, at any lipoprotein concentration, protein association to the cells is significantly smaller for IDL, LDL, and HDL3 than CE association, but not for VLDL. At a concentration of 20 µg lipoprotein/mL, these associations reveal CE-selective uptake in the order of 2-, 4-, and 11-fold for IDL, LDL, and HDL3, respectively. These studies reveal that LDL and HDL3 are good selective donors of CE to HepG2 cells, while IDL is a poor donor and VLDL is not a donor. A significant inverse correlation (r2 = 0.973) was found between the total lipid/protein ratios of the four classes of lipoproteins and the extent of CE-selective uptake by HepG2 cells. The fate of 3H-CE of the two best CE donors (LDL and HDL3) was followed in HepG2 cells after 3 h of incubation. Cells were shown to hydrolyze approximately 25% of the 3H-CE of both lipoproteins. However, when the cells were treated with 100 µM of chloroquine, a lysosomotropic agent, 85 and 40% of 3H-CE hydrolysis was lost for LDL and HDL3, respectively. The fate of LDL and HDL3-CE in HepG2 cells deficient in LDL-receptor was found to be the same, indicating that the portion of CE hydrolysis sensitive to chloroquine is not significantly linked to LDL-receptor activity. Thus, in HepG2 cells, the magnitude of CE-selective uptake is inversely correlated with the total lipid/protein ratios of the lipoproteins and CE-selective uptake from the two best CE donors (LDL and HDL3) appears to follow different pathways.Key words: lipoprotein, receptor, HepG2 cell, selective uptake, lipid, cholesterol, binding.


Sign in / Sign up

Export Citation Format

Share Document