scholarly journals Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias

2021 ◽  
Author(s):  
Nikoleta Vavouraki ◽  
James E. Tomkins ◽  
Eleanna Kara ◽  
Henry Houlden ◽  
John Hardy ◽  
...  

AbstractThe Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Despite the identification of causative mutations in over 70 genes, the molecular aetiology remains unclear. Due to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human protein-protein interactions were used to create a protein-protein interaction network based on the causative Hereditary Spastic Paraplegia genes. Network evaluation as a combination of both topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, suggesting there is scope to further classify conditions currently described under the same umbrella term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.

2019 ◽  
Author(s):  
Jarmila Nahálková

The protein-protein interaction network of seven pleiotropic proteins (PIN7) contains proteins with multiple functions in the aging and age-related diseases (TPPII, CDK2, MYBBP1A, p53, SIRT6, SIRT7, and BSG). At the present work, the pathway enrichment, the gene function prediction and the protein node prioritization analysis were applied for the examination of main molecular mechanisms driving PIN7 and the extended network. Seven proteins of PIN7 were used as an input for the analysis by GeneMania, a Cytoscape application, which constructs the protein interaction network. The software also extends it using the interactions retrieved from databases of experimental and predicted protein-protein and genetic interactions. The analysis identified the p53 signaling pathway as the most dominant mediator of PIN7. The extended PIN7 was also analyzed by Cytohubba application, which showed that the top-ranked protein nodes belong to the group of histone acetyltransferases and histone deacetylases. These enzymes are involved in the reverse epigenetic regulation mechanisms linked to the regulation of PTK2, NFκB, and p53 signaling interaction subnetworks of the extended PIN7. The analysis emphasized the role of PTK2 signaling, which functions upstream of the p53 signaling pathway and its interaction network includes all members of the sirtuin family. Further, the analysis suggested the involvement of molecular mechanisms related to metastatic cancer (prostate cancer, small cell lung cancer), hemostasis, the regulation of the thyroid hormones and the cell cycle G1/S checkpoint. The additional data-mining analysis showed that the small protein interaction network MYBBP1A-p53-TPPII-SIRT6-CD147 controls Warburg effect and MYBBP1A-p53-TPPII-SIRT7-BSG influences mTOR signaling and autophagy. Further investigations of the detail mechanisms of these interaction networks would be beneficial for the development of novel treatments for aging and age-related diseases.


2021 ◽  
Author(s):  
Zhu Lili ◽  
Zhu YuKun ◽  
Zhuangzhuang Tian ◽  
Yongsheng Li ◽  
Liyu Cao

Abstract Background Classic Hodgkin lymphoma (CHL) is the most common HL in the modern society. Although the treatment of cHL has made great progress, its molecular mechanisms have yet to be deciphered. Objectives The purpose of this study is to find out the crucial potential genes and pathways associated with cHL. Methods We downloaded the cHL microarray dataset (GSE12453) from Gene Expression Omnibus (GEO) database and to identify the differentially expressed genes (DEGs) between cHL samples and normal samples through the limma package in R. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were carried out. Finally, we constructed the protein-protein interaction network to screen out the hub genes using Search Tool for the Retrieval of Interacting Genes (STRING) database. Results We screened out 788 DEGs in the cHL dataset, such as BATF3, IER3, RAB13 and FCRL2. GO functional enrichment analysis indicated that the DEGs were related with regulation of lymphocyte activation, secretory granule lumen and chemokine activity. KEGG pathway analysis showed that the genes enriched in Prion disease, Complement and coagulation cascades and Parkinson disease Coronavirus disease-COVID-19 pathway. Protein-protein interaction network construction identified 10 hub genes (IL6, ITGAM, CD86, FN1, MMP9, CXCL10, CCL5, CD19, IFNG, SELL, UBB) in the network. Conclusions In the present investigation, we identified several pathways and hub genes related to the occurrence and development of cHL, which may provide an important basis for further research and novel therapeutic targets and prognostic indicators for cHL.


2020 ◽  
Vol 29 (8) ◽  
pp. 1378-1387 ◽  
Author(s):  
Xinjian Yu ◽  
Siqi Lai ◽  
Hongjun Chen ◽  
Ming Chen

Abstract Research of protein–protein interaction in several model organisms is accumulating since the development of high-throughput experimental technologies and computational methods. The protein–protein interaction network (PPIN) is able to examine biological processes in a systematic manner and has already been used to predict potential disease-related proteins or drug targets. Based on the topological characteristics of the PPIN, we investigated the application of the random forest classification algorithm to predict proteins that may cause neurodegenerative disease, a set of pathological changes featured by protein malfunction. By integrating multiomics data, we further showed the validity of our machine learning model and narrowed down the prediction results to several hub proteins that play essential roles in the PPIN. The novel insights into neurodegeneration pathogenesis brought by this computational study can indicate promising directions for future experimental research.


2019 ◽  
Author(s):  
Jarmila Nahálková

The protein-protein interaction network of seven pleiotropic proteins (PIN7) contains proteins with multiple functions in the aging and age-related diseases (TPPII, CDK2, MYBBP1A, p53, SIRT6, SIRT7, and BSG). At the present work, the pathway enrichment, the gene function prediction and the protein node prioritization analysis were applied for the examination of main molecular mechanisms driving PIN7 and the extended network. Seven proteins of PIN7 were used as an input for the analysis by GeneMania, a Cytoscape application, which constructs the protein interaction network. The software also extends it using the interactions retrieved from databases of experimental and predicted protein-protein and genetic interactions. The analysis identified the p53 signaling pathway as the most dominant mediator of PIN7. The extended PIN7 was also analyzed by Cytohubba application, which showed that the top-ranked protein nodes belong to the group of histone acetyltransferases and histone deacetylases. These enzymes are involved in the reverse epigenetic regulation mechanisms linked to the regulation of PTK2, NFκB, and p53 signaling interaction subnetworks of the extended PIN7. The analysis emphasized the role of PTK2 signaling, which functions upstream of the p53 signaling pathway and its interaction network includes all members of the sirtuin family. Further, the analysis suggested the involvement of molecular mechanisms related to metastatic cancer (prostate cancer, small cell lung cancer), hemostasis, the regulation of the thyroid hormones and the cell cycle G1/S checkpoint. The additional data-mining analysis showed that the small protein interaction network MYBBP1A-p53-TPPII-SIRT6-CD147 controls Warburg effect and MYBBP1A-p53-TPPII-SIRT7-BSG influences mTOR signaling and autophagy. Further investigations of the detail mechanisms of these interaction networks would be beneficial for the development of novel treatments for aging and age-related diseases.


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document