scholarly journals Minimal genetically encoded tags for fluorescent protein labeling in living neurons

2021 ◽  
Author(s):  
Aleksandra Arsić ◽  
Cathleen Hagemann ◽  
Nevena Stajković ◽  
Timm Schubert ◽  
Ivana Nikić-Spiegel

AbstractModern light microscopy, including super-resolution techniques, brought about a demand for small labeling tags that bring the fluorophore closer to the target. This challenge can be addressed by labeling unnatural amino acids (UAAs) with click chemistry. UAAs are site-specifically incorporated into a protein of interest by genetic code expansion. If the UAA carries a strained alkene or alkyne moiety it can be conjugated to a tetrazine-bearing fluorophore via a strain-promoted inverse-electron-demand Diels–Alder cycloaddition (SPIEDAC), a variant of bioorthogonal click chemistry. The minimal size of the incorporated tag and the possibility to couple the fluorophores directly to the protein of interest with single-residue precision make SPIEDAC live-cell labeling unique. However, until now, this type of labeling has not been used in complex, non-dividing cells, such as neurons. Using neurofilament light chain as a target protein, we established SPIEDAC labeling in living primary neurons and applied it for fixed-cell, live-cell, dual-color pulse—chase and super-resolution microscopy. We also show that SPIEDAC labeling can be combined with CRISPR/Cas9 genome engineering for tagging endogenous NFL. Due to its versatile nature and compatibility with advanced microscopy techniques, we anticipate that SPIEDAC labeling will contribute to novel discoveries in neurobiology.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Aleksandra Arsić ◽  
Cathleen Hagemann ◽  
Nevena Stajković ◽  
Timm Schubert ◽  
Ivana Nikić-Spiegel

AbstractModern light microscopy, including super-resolution techniques, has brought about a demand for small labeling tags that bring the fluorophore closer to the target. This challenge can be addressed by labeling unnatural amino acids (UAAs) with bioorthogonal click chemistry. The minimal size of the UAA and the possibility to couple the fluorophores directly to the protein of interest with single-residue precision in living cells make click labeling unique. Here, we establish click labeling in living primary neurons and use it for fixed-cell, live-cell, dual-color pulse–chase, and super-resolution microscopy of neurofilament light chain (NFL). We also show that click labeling can be combined with CRISPR/Cas9 genome engineering for tagging endogenous NFL. Due to its versatile nature and compatibility with advanced multicolor microscopy techniques, we anticipate that click labeling will contribute to novel discoveries in the neurobiology field.


ACS Nano ◽  
2018 ◽  
Vol 12 (12) ◽  
pp. 12247-12254 ◽  
Author(s):  
Kim-A. Saal ◽  
Frank Richter ◽  
Peter Rehling ◽  
Silvio O. Rizzoli

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiwoong Kwon ◽  
Jong-Seok Park ◽  
Minsu Kang ◽  
Soobin Choi ◽  
Jumi Park ◽  
...  

2017 ◽  
Vol 46 (5) ◽  
pp. e30-e30 ◽  
Author(s):  
Maria V Neguembor ◽  
Ruben Sebastian-Perez ◽  
Francesco Aulicino ◽  
Pablo A Gomez-Garcia ◽  
Maria P Cosma ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Sebastian Schnorrenberg ◽  
Tim Grotjohann ◽  
Gerd Vorbrüggen ◽  
Alf Herzig ◽  
Stefan W Hell ◽  
...  

Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (<xref ref-type="bibr" rid="bib10">Grotjohann et al., 2012</xref>). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues.


2017 ◽  
Vol 23 (50) ◽  
pp. 12114-12119 ◽  
Author(s):  
Alexey N. Butkevich ◽  
Vladimir N. Belov ◽  
Kirill Kolmakov ◽  
Viktor V. Sokolov ◽  
Heydar Shojaei ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7099
Author(s):  
Verena Richter ◽  
Peter Lanzerstorfer ◽  
Julian Weghuber ◽  
Herbert Schneckenburger

Here, we present a simple and robust experimental setup for the super-resolution live cell microscopy of membrane-proximal fluorophores, which is comparably easy to perform and to implement. The method is based on Structured Illumination Microscopy (SIM) with a switchable spatial light modulator (SLM) and exchangeable objective lenses for epi-illumination and total internal reflection fluorescence (TIRF) microscopy. While, in the case of SIM (upon epi-illumination), cell layers of about 1–2 µm in close proximity to the plasma membrane can be selected by software, layers in the 100 nm range are assessed experimentally by TIRF-SIM. To show the applicability of this approach, both methods are used to measure the translocation of the glucose transporter 4 (GLUT4) from intracellular vesicles to the plasma membrane upon stimulation by insulin or insulin-mimetic compounds, with a lateral resolution of around 100 nm and an axial resolution of around 200 nm. While SIM is an appropriate method to visualize the intracellular localization of GLUT4 fused with a green fluorescent protein, TIRF-SIM permits the quantitative evaluation of its fluorescence in the plasma membrane. These imaging methods are discussed in the context of fluorescence lifetime kinetics, providing additional data for the molecular microenvironment.


Author(s):  
Philipp Werther ◽  
Klaus Yserentant ◽  
Felix Braun ◽  
Kristin Grussmayer ◽  
Vytautas Navikas ◽  
...  

AbstractSmall-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labelling via bioorthogonal tetrazine chemistry confers minimal label size and rapid labelling kinetics. At the same time, fluorogenic tetrazine-dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine-dye conjugates with minimal distance between tetrazine and fluorophore. Two synthetic routes give access to a series of cell permeable and impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as dominant excited state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multi-colour and super-resolution STED and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size.


2014 ◽  
Vol 53 (8) ◽  
pp. 2245-2249 ◽  
Author(s):  
Ivana Nikić ◽  
Tilman Plass ◽  
Oliver Schraidt ◽  
Jędrzej Szymański ◽  
John A. G. Briggs ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Gerti Beliu ◽  
Markus Sauer

AbstractNew peptide vehicles enable the efficient live-cell labeling of intracellular organelles with cell-impermeable fluorescent probes by simple coincubation, paving the way for refined multicolor super-resolution fluorescence imaging.


Sign in / Sign up

Export Citation Format

Share Document