scholarly journals A SARS-CoV-2 Label-Free Surrogate Virus Neutralization Test and a Longitudinal Study of Antibody Characteristics in COVID-19 Patients

Author(s):  
Yiqi Ruben Luo ◽  
Cassandra Yun ◽  
Indrani Chakraborty ◽  
Alan H.B. Wu ◽  
Kara L. Lynch

AbstractBackgroundThe laboratory-based methods to measure the SARS-CoV-2 humoral response include virus neutralization tests (VNTs) to determine antibody neutralization potency. For ease of use and universal applicability, surrogate virus neutralization tests (sVNTs) based on antibody-mediated blockage of molecular interactions have been proposed.MethodsA surrogate virus neutralization test established on a label-free immunoassay platform (LF-sVNT). The LF-sVNT analyzes the binding ability of RBD to ACE2 after neutralizing RBD with antibodies in serum.ResultsThe LF-sVNT neutralizing antibody titers (IC50) were determined from serum samples (n=246) from COVID-19 patients (n=113), as well as the IgG concentrations and the IgG avidity indices. Although there is variability in the kinetics of the IgG concentrations and neutralizing antibody titers between individuals, there is an initial rise, plateau and then in some cases a gradual decline at later timepoints after 40 days post-symptom onset. The IgG avidity indices, in the same cases, plateau after the initial rise and did not show a decline.ConclusionsThe LF-sVNT can be a valuable tool in clinical laboratories for the assessment of the presence of neutralizing antibodies to COVID-19. This study is the first to provide longitudinal neutralizing antibody titers beyond 200 days post-symptom onset. Despite the decline of IgG concentration and neutralizing antibody titer, IgG avidity index increases, reaches a plateau and then remains constant up to 8 months post-infection. The decline of antibody neutralization potency can be attributed to the reduction in antibody quantity rather than the deterioration of antibody avidity, a measure of antibody quality.SummaryA surrogate virus neutralization test established on a label-free immunoassay platform (LF-sVNT). Using the LF-sVNT and other assays, 246 serum samples from 113 COVID-19 patients were measured. We observed the time course of antibody characteristics beyond 200 days post-symptom onset.

Author(s):  
Yiqi Ruben Luo ◽  
Cassandra Yun ◽  
Indrani Chakraborty ◽  
Alan H.B. Wu ◽  
Kara L. Lynch

Methods designed to measure SARS-CoV-2 humoral response include virus neutralization tests to determine antibody neutralization activity. For ease of use and universal applicability, surrogate virus neutralization tests (sVNTs) based on antibody-mediated blockage of molecular interactions have been proposed. A surrogate virus neutralization test was established on a label-free immunoassay platform (LF-sVNT). The LF-sVNT analyzes the binding ability of SARS-CoV-2 spike protein receptor-binding domain (RBD) to ACE2 after neutralizing RBD with antibodies in serum. The LF-sVNT neutralizing antibody titers (IC50) were determined from serum samples (n=246) from COVID-19 patients (n=113), as well as the IgG concentrations and the IgG avidity indices. Although there was variability in the kinetics of the IgG concentrations and neutralizing antibody titers between individuals, there was an initial rise, plateau and then in some cases a gradual decline at later timepoints after 40 days post-symptom onset. The IgG avidity indices, in the same cases, plateaued after an initial rise and did not show a decline. The LF-sVNT can be a valuable tool in research and clinical laboratories for the assessment of the presence of neutralizing antibodies to COVID-19. This study is the first to provide longitudinal neutralizing antibody titers beyond 200 days post-symptom onset. Despite the decline of IgG concentration and neutralizing antibody titer, IgG avidity index increases, reaches a plateau and then remains constant up to 8 months post-infection. The decline of antibody neutralization activity can be attributed to the reduction in antibody quantity rather than the deterioration of antibody quality, as measured by antibody avidity.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S32-S32
Author(s):  
Y R Luo ◽  
C Yun ◽  
A H Wu ◽  
K L Lynch ◽  
I Chakraborty

Abstract Introduction/Objective Since the start of the COVID-19 pandemic, much research has focused on the kinetics and magnitude of humoral immune response. With the advantages of monitoring real-time immunoreactions, label-free immunoassay (LFIA) is becoming a powerful tool in serology studies. We have developed LFIAs to measure SARS- CoV-2 antibody avidity and neutralization activity in a cohort of COVID-19 patients and determine if they correlate with antibody concentration. Serial serum samples collected from mild to severe COVID-19 patients were measured out to 8 months post-symptom onset to determine the durability of the neutralizing antibody response. Methods/Case Report Based on thin-film interferometry technology, we established a label-free IgG avidity assay and a label-free surrogate virus neutralization test (LF-sVNT). For measurement, sensing probes pre-coated with receptor-binding domain (RBD) of SARS-CoV-2 spike protein are applied to serum samples containing SARS-CoV-2 antibodies. The label-free IgG avidity assay measures the binding strength between RBD and IgG under urea dissociation. The LF-sVNT analyzes the binding ability of RBD to ACE2 after neutralizing RBD with antibodies. Results (if a Case Study enter NA) IgG avidity indices and neutralizing antibody titers (IC50) were determined from serum samples (n=246) from COVID-19 patients (n=113). IgG concentrations were measured using a fluorescent immunoassay. The neutralizing antibody titers showed a weak correlation with IgG concentrations and no correlation with IgG avidity indices. Over the time course up to 8 months post-symptom onset, IgG concentrations and neutralizing antibody titers presented similar trends: an initial rise, plateau and then in some cases a gradual decline after 40 days. The IgG avidity indices, in the same cases, plateaued after the initial rise. Conclusion The results demonstrated that LFIA could be used an excellent solution in the determination of SARS- CoV-2 antibody characteristics. The study found that IgG concentration and neutralizing antibody titer declined over time, while IgG avidity index remained constant after reaching a plateau. The decline of antibody neutralization activity can be attributed to the reduction in antibody quantity rather than the deterioration of antibody quality, as measured by antibody avidity.


2020 ◽  
Author(s):  
Antonin Bal ◽  
Bruno Pozzetto ◽  
Mary-Anne Trabaud ◽  
Vanessa Escuret ◽  
Muriel Rabilloud ◽  
...  

BackgroundThe association between SARS-CoV-2 commercial serological assays and virus neutralization test (VNT) has been poorly explored in mild COVID-19 patients.MethodsA total of 439 serum specimens were longitudinally collected from 76 healthcare workers with RT-PCR-confirmed COVID-19. The sensitivity (determined weekly) of nine commercial serological assays were evaluated. Specificity was assessed using 69 pre-pandemic sera. Correlation, agreement and concordance with the VNT were also assessed on a subset of 170 samples. Area under the ROC curve (AUC) was estimated at several neutralizing antibody titers.ResultsThe Wantai Total Ab assay targeting the receptor binding domain (RBD) within the S protein presented the best sensitivity at different times during the course of disease. The specificity was greater than 95% for all tests except for the Euroimmun IgA assay. The overall agreement with the presence of neutralizing antibodies ranged from 62.2% (95%CI; 56.0-68.1) for bioMérieux IgM to 91.2% (87.0-94.2) for Siemens. The lowest negative percent agreement (NPA) was found with the Wantai Total Ab assay (NPA 33% (21.1-48.3)). The NPA for other total Ab or IgG assays targeting the S or the RBD was 80.7% (66.7-89.7), 90.3 (78.1-96.1) and 96.8% (86.8-99.3) for Siemens, bioMérieux IgG and DiaSorin, respectively. None of commercial assays have sufficient performance to detect a neutralizing titer of 80 (AUC<0.76).ConclusionsAlthough some assays presented a better agreement with VNT than others, the present findings emphasize that commercialized serological tests including those targeting the RBD cannot substitute a VNT for the assessment of functional antibody response.


2021 ◽  
Author(s):  
Antonin Bal ◽  
Bruno Pozzetto ◽  
Mary-Anne Trabaud ◽  
Vanessa Escuret ◽  
Muriel Rabilloud ◽  
...  

Abstract Background The association between SARS-CoV-2 commercial serological assays and virus neutralization test (VNT) has been poorly explored in mild patients with COVID-19. Methods 439 serum specimens were longitudinally collected from 76 healthcare workers with RT-PCR-confirmed COVID-19. The clinical sensitivity (determined weekly) of nine commercial serological assays were evaluated. Clinical specificity was assessed using 69 pre-pandemic sera. Correlation, agreement and concordance with the VNT were also assessed on a subset of 170 samples. Area under the ROC curve (AUC) was estimated at 2 neutralizing antibody titers. Results The Wantai Total Ab assay targeting the receptor binding domain (RBD) within the S protein presented the best sensitivity at different times during the course of disease. The clinical specificity was greater than 95% for all tests except for the Euroimmun IgA assay. The overall agreement with the presence of neutralizing antibodies ranged from 62.2% (95%CI; 56.0-68.1) for bioMérieux IgM to 91.2% (87.0-94.2) for Siemens. The lowest negative percent agreement (NPA) was found with the Wantai Total Ab assay (NPA 33% (21.1-48.3)). The NPA for other total Ab or IgG assays targeting the S or the RBD was 80.7% (66.7-89.7), 90.3 (78.1-96.1) and 96.8% (86.8-99.3) for Siemens, bioMérieux IgG and DiaSorin, respectively. None of commercial assays have sufficient performance to detect a neutralizing titer of 80 (AUC&lt;0.76). Conclusions Although some assays show a better agreement with VNT than others, the present findings emphasize that commercialized serological tests including those targeting the RBD cannot substitute a VNT for the assessment of functional antibody response.


Author(s):  
Suellen Nicholson ◽  
Theo Karapanagiotidis ◽  
Arseniy Khvorov ◽  
Celia Douros ◽  
Francesca Mordant ◽  
...  

Abstract Background Serological testing for SARS-CoV-2 complements nucleic acid tests for patient diagnosis and enables monitoring of population susceptibility to inform the COVID-19 pandemic response. It is important to understand the reliability of assays with different antigen or antibody targets to detect humoral immunity after SARS-CoV-2 infection and to understand how antibody (Ab) binding assays compare to those detecting neutralizing antibody (nAb), particularly as we move into the era of vaccines. Methods We evaluated the performance of six commercially available Enzyme-linked Immunosorbent Assays (ELISAs), including a surrogate virus neutralization test (sVNT), for detection of SARS-CoV-2 immunoglobulins (IgA, IgM, IgG), total or nAb. A result subset was compared to a cell culture-based microneutralisation (MN) assay. We tested sera from patients with prior RT-PCR confirmed SARS-CoV-2 infection, pre-pandemic sera and potential cross-reactive sera from patients with other non-COVID-19 acute infections. Results For sera collected &gt; 14 days post-symptom onset, the assay achieving the highest sensitivity was the Wantai total Ab at 100% (95% confidence interval: 94.6-100) followed by 93.1% for Euroimmun NCP-IgG, 93.1% for GenScript sVNT, 90.3% for Euroimmun S1-IgG, 88.9% for Euroimmun S1-IgA and 83.3% for Wantai IgM. Specificity for the best performing assay was 99.5% for the Wantai total Ab and for the lowest performing assay was 97.1% for sVNT (as per IFU). The Wantai Total Ab had the best agreement with MN at 98% followed by Euroimmun S1-IgA, Euro NCP-IgG and sVNT (as per IFU) with (97%, 97% and 95% respectively) and Wantai IgM having the poorest agreement at 93%. Conclusion Performance characteristics of the SARS-CoV-2 serology assays detecting different antibody types are consistent with those found in previously published reports. Evaluation of the surrogate virus neutralization test in comparison to the Ab binding assays and a cell culture-based neutralization assay showed good result correlation between all assays. However correlation between the cell-based neutralization test and some assays detecting Ab’s not specifically involved in neutralization was higher than with the sVNT. This study demonstrates the reliability of different assays to detect the humoral immune response following SARS-CoV-2 infection, which can be used to optimise serological test algorithms for assessing antibody responses post SARS-CoV-2 infection or vaccination.


1976 ◽  
Vol 4 (5) ◽  
pp. 437-442
Author(s):  
G Gerna ◽  
R W Chambers

A new plaque assay for the quantitation of varicella-zoster virus and a plaque reduction neutralization test for the determination of neutralizing antibody titer have been developed using the indirect immunoperoxidase technique. As compared with the classical plaque assay using a solid overlay, the test gives earlier results since plaque counting can be performed on day 3 after the inoculation of cell cultures. In six patients with zoster infection, neutralizing antibody titers ranged from 1:20 to 1:40 before the onset of infection and reached high levels (1:320 to 1:5,120) during the convalescent phase of the disease. Complement-fixing (CF) titers were all negative (less than 1:8) in prezoster serum samples from the same patients and ranged from 1:128 to 1:2,048 in the convalescent-phase sera. In the two cases in which late serum samples were available, neutralizing antibody titers matched the preillness levels, whereas CF titers dropped to undetectable levels. Neither neutralizing nor CF antibody was detected in two sera from individuals with no history of varicella-zoster infection. No differences in virus titers or neutralizing antibody titers were observed between the immunoperoxidase and the classical plaque assays. The appropriate characterization of reagent specificity is required before routine application of the test.


2021 ◽  
Author(s):  
Natalie E Hofmann ◽  
Marica Grossegesse ◽  
Markus Neumann ◽  
Lars Schaade ◽  
Andreas Nitsche

Background: High-throughput detection of neutralizing antibodies against SARS-CoV-2 presents a valuable tool for vaccine trials or investigations of population immunity. We evaluate the performance of the first commercial surrogate virus neutralization test (sVNT, GenScript Biotech) against SARS-CoV-2 plaque reduction neutralization test (PRNT) in convalescent and vaccinated individuals. We compare it to five other ELISAs, two of which are designed to detect neutralizing antibodies. Results: In 491 pre-vaccination serum samples, sVNT missed 23.6% of PRNT-positive samples when using the manufacturer-recommended cutoff of 30% binding inhibition. Introducing a equivocal area between 15 and 35% maximized sensitivity and specificity against PRNT to 72.8-93.1 % and 73.5-97.6%, respectively. The overall diagnostic performance of the other ELISAs for neutralizing antibodies was below that of sVNT. Vaccinated individuals exhibited higher antibody titers by PRNT (median 119.8, IQR 56.7-160) and binding inhibition by sVNT (median 95.7, IQR 88.1-96.8) than convalescent patients (median 49.1, IQR 20-62; median 52.9, IQR 31.2-76.2). Conclusion: GenScript sVNT is suitable to screen for SARS-CoV-2-neutralizing antibodies; however, to obtain accurate results, confirmatory testing by PRNT in a equivocal area is required. This equivocal area may require adaptation for use in vaccinated individuals, due to higher antibody titers.


2021 ◽  
Vol 118 (47) ◽  
pp. e2114828118
Author(s):  
Jeffrey C. Chandler ◽  
Sarah N. Bevins ◽  
Jeremy W. Ellis ◽  
Timothy J. Linder ◽  
Rachel M. Tell ◽  
...  

Widespread human SARS-CoV-2 infections combined with human–wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


2007 ◽  
Vol 15 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Yun Young Go ◽  
Susan J. Wong ◽  
Adam J. Branscum ◽  
Valerie L. Demarest ◽  
Kathleen M. Shuck ◽  
...  

ABSTRACT The development and validation of a microsphere immunoassay (MIA) to detect equine antibodies to the major structural proteins of equine arteritis virus (EAV) are described. The assay development process was based on the cloning and expression of genes for full-length individual major structural proteins (GP5 amino acids 1 to 255 [GP51-255], M1-162, and N1-110), as well as partial sequences of these structural proteins (GP51-116, GP575-112, GP555-98, M88-162, and N1-69) that constituted putative antigenic regions. Purified recombinant viral proteins expressed in Escherichia coli were covalently bound to fluorescent polystyrene microspheres and analyzed with the Luminex xMap 100 instrument. Of the eight recombinant proteins, the highest concordance with the virus neutralization test (VNT) results was obtained with the partial GP555-98 protein. The MIA was validated by testing a total of 2,500 equine serum samples previously characterized by the VNT. With the use of an optimal median fluorescence intensity cutoff value of 992, the sensitivity and specificity of the assay were 92.6% and 92.9%, respectively. The GP555-98 MIA and VNT outcomes correlated significantly (r = 0.84; P < 0.0001). Although the GP555-98 MIA is less sensitive than the standard VNT, it has the potential to provide a rapid, convenient, and more economical test for screening equine sera for the presence of antibodies to EAV, with the VNT then being used as a confirmatory assay.


2011 ◽  
Vol 18 (11) ◽  
pp. 1889-1894 ◽  
Author(s):  
Minetaro Arita ◽  
Masae Iwai ◽  
Takaji Wakita ◽  
Hiroyuki Shimizu

ABSTRACTIn the Global Polio Eradication Initiative, laboratory diagnosis plays a critical role by isolating and identifying poliovirus (PV) from the stool samples from acute flaccid paralysis (AFP) cases. In recent years, reestablishment of PV circulation in countries where PV was previously eliminated has occurred because of decreased herd immunity, possibly due to poor vaccination coverage. To monitor the vulnerability of countries to PV circulation, surveillance of neutralizing-antibody titers against PV in susceptible populations is essential in the end game of the polio eradication program. In this study, we have developed a PV neutralization test with type 1, 2, and 3 PV pseudoviruses to determine the neutralizing-antibody titer against PV in human serum samples. With this test, the neutralizing-antibody titer against PV could be determined within 2 days by automated interpretation of luciferase signals without using infectious PV strains. We validated the pseudovirus PV neutralization test with 131 human serum samples collected from a wide range of age groups (ages 1 to >60 years) by comparison with a conventional neutralization test. We found good correlation in the neutralizing-antibody titers determined by these tests. These results suggest that a pseudovirus PV neutralization test would serve as a safe and simple procedure for the measurement of the neutralizing-antibody titer against PV.


Sign in / Sign up

Export Citation Format

Share Document