scholarly journals Transcranial direct current stimulation does not improve performance in a whole-body movement task

2021 ◽  
Author(s):  
Harriet Caesley ◽  
Isabella Sewell ◽  
Nikita Gogineni ◽  
Amir-Homayoun Javadi

AbstractResearch has investigated the use of non-invasive brain interventions, such as transcranial direct current stimulation (tDCS), to enhance motor learning and rehabilitation. Much research has shown that tDCS improves motor learning and that bilateral tDCS is more beneficial than unilateral tDCS in improving motor learning. However, past research has primarily utilised simple motor tasks in measuring motor skill learning. These are not ecologically reliable as whole-body movement is required for everyday activities. This study involved two experiments. Each experiment involved participants learning 12 Ballroom and Latin dance moves whilst undergoing tDCS. All participants underwent three sessions of tDCS, (unilateral, bilateral and sham), over three consecutive days. Participants in the first experiment (n=30) had stimulation to the primary motor cortex (PMC) and those in the second experiment (n=31) had stimulation to the dorsolateral prefrontal cortex (DLPFC). In each experiment, a baseline was taken before the training sessions and two outcome measures were taken; a day after the last training session and two weeks later. In each testing session participants’ dance ability was measured. Our results showed that bilateral tDCS impaired performance in both experiments. Unilateral stimulation impaired performance in the first experiment, and did not significantly improve performance any better than the sham stimulation in the second experiment. These results suggest that task complexity plays a crucial role when tDCS procedures are used to modulate motor performance and highlights possible limitations of tDCS in practice.

2018 ◽  
Vol 12 ◽  
Author(s):  
Lauran Cole ◽  
Adrianna Giuffre ◽  
Patrick Ciechanski ◽  
Helen L. Carlson ◽  
Ephrem Zewdie ◽  
...  

2016 ◽  
Vol 127 (4) ◽  
pp. 2119-2126 ◽  
Author(s):  
Georgios Naros ◽  
Marc Geyer ◽  
Susanne Koch ◽  
Lena Mayr ◽  
Tabea Ellinger ◽  
...  

2018 ◽  
Vol 29 (4) ◽  
pp. 463-473 ◽  
Author(s):  
Mana Biabani ◽  
Michael Farrell ◽  
Maryam Zoghi ◽  
Gary Egan ◽  
Shapour Jaberzadeh

Abstract Crossover designs are used by a high proportion of studies investigating the effects of transcranial direct current stimulation (tDCS) on motor learning. These designs necessitate attention to aspects of data collection and analysis to take account of design-related confounds including order, carryover, and period effects. In this systematic review, we appraised the method sections of crossover-designed tDCS studies of motor learning and discussed the strategies adopted to address these factors. A systematic search of 10 databases was performed and 19 research papers, including 21 experimental studies, were identified. Potential risks of bias were addressed in all of the studies, however, not in a rigorous and structured manner. In the data collection phase, unclear methods of randomization, various lengths of washout period, and inconsistency in the counteracting period effect can be observed. In the analytical procedures, the stratification by sequence group was often ignored, and data were treated as if it belongs to a simple repeated-measures design. An inappropriate use of crossover design can seriously affect the findings and therefore the conclusions drawn from tDCS studies on motor learning. The results indicate a pressing need for the development of detailed guidelines for this type of studies to benefit from the advantages of a crossover design.


Sign in / Sign up

Export Citation Format

Share Document