scholarly journals Harmful Algal Bloom-Forming Organism Responds to Nutrient Stress Distinctly From Model Phytoplankton

2021 ◽  
Author(s):  
Craig McLean ◽  
Sheean T. Haley ◽  
Gretchen J. Swarr ◽  
Melissa C. Kido Soule ◽  
Sonya T. Dyhrman ◽  
...  

SummaryResources such as nitrogen (N) and phosphorus (P) play an important role in primary production and constraining phytoplankton bloom dynamics. Models to predict bloom dynamics require mechanistic knowledge of algal metabolic shifts in response to resource limitation. For well-studied model phytoplankton like diatoms, this information is plentiful. However, for less-studied groups such as the raphidophytes, there remain significant gaps in understanding metabolic changes associated with nutrient limitation.Using a novel combination of metabolomics and transcriptomics, we examined how the harmful algal bloom-forming raphidophyte Heterosigma akashiwo shifts its metabolism under N- and P-stress. We chose H. akashiwo because of its ubiquity within estuarine environments worldwide, where bloom dynamics are influenced by N and P availability.Our results show that each stress phenotype is distinct in both the allocation of carbon and the recycling of macromolecules. Further, we identified biomarkers of N- and P-stress that may be applied in situ to help modelers and stakeholders manage, predict, and prevent future blooms.These findings provide a mechanistic foundation to model the metabolic traits and trade-offs associated with N- and P-stress in H. akashiwo, and evaluate the extent to which these metabolic responses can be inferred in other phytoplankton groups.

2017 ◽  
Vol 60 (6) ◽  
Author(s):  
Susan Badylak ◽  
Edward J. Phlips ◽  
Ashley Loren Mathews ◽  
Karen Kelley

AbstractThis study reports on the harmful algal bloom (HAB) dinoflagellate


2021 ◽  
Vol 8 ◽  
Author(s):  
Catherine Jordan ◽  
Caroline Cusack ◽  
Michelle C. Tomlinson ◽  
Andrew Meredith ◽  
Ryan McGeady ◽  
...  

During the months of May, June, July and August 2019 the Red Band Difference algorithm was tested over Irish waters to assess its suitability for the Irish harmful algal bloom alert system. Over the 4 weeks of June an extensive localised surface phytoplankton bloom formed in the Celtic Sea, south of Ireland. Satellite imagery from the Sentinel-3a’s Ocean and Land Colour Instrument, processed using the Red Band Difference algorithm detected the bloom in surface shelf waters and helped monitor its movement. Daily satellite images indicated that the bloom appeared at the sea surface on the 2nd June 2019 and peaked in size and surface abundance in offshore shelf waters within 4 weeks, remnants remained at the surface into July. A particle tracking approach was used to replicate oceanic circulation patterns in the vicinity of the observed algal bloom and estimate its trajectory. The initial horizontal distribution of particles in the tracking model were based on a satellite imagery polygon of the bloom when it first appeared in surface waters. Good agreement was observed between satellite imagery of the bloom and the particle tracking model. In situ sampling efforts from a research cruise and the national inshore phytoplankton monitoring programme confirmed that Karenia mikimotoi was the causative organism of the bloom. This pilot study shows great potential to use the Red Band Difference algorithm in the existing Irish harmful algal bloom alert system. In addition, satellite ocean colour data combined with particle tracking model estimates can be a useful tool to monitor high biomass harmful algal bloom forming species, such as Karenia mikimotoi, in surface coastal waters around Ireland and elsewhere.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tiancun Liu ◽  
Jinlong Wang ◽  
Yi Xu ◽  
Yifan Zhang ◽  
Yong Wang

Highlights A facile method is adopted to obtain cucumber-like lithiophilic composite skeleton. Massive lithiophilic sites in cucumber-like lithiophilic composite skeleton can promote and guide uniform Li depositions. A unique model of stepwise Li deposition and stripping is determined. Abstract The uncontrolled formation of lithium (Li) dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries. Herein, we report a cucumber-like lithiophilic composite skeleton (CLCS) fabricated through a facile oxidation-immersion-reduction method. The stepwise Li deposition and stripping, determined using in situ Raman spectra during the galvanostatic Li charging/discharging process, promote the formation of a dendrite-free Li metal anode. Furthermore, numerous pyridinic N, pyrrolic N, and CuxN sites with excellent lithiophilicity work synergistically to distribute Li ions and suppress the formation of Li dendrites. Owing to these advantages, cells based on CLCS exhibit a high Coulombic efficiency of 97.3% for 700 cycles and an improved lifespan of 2000 h for symmetric cells. The full cells assembled with LiFePO4 (LFP), SeS2 cathodes and CLCS@Li anodes demonstrate high capacities of 110.1 mAh g−1 after 600 cycles at 0.2 A g−1 in CLCS@Li|LFP and 491.8 mAh g−1 after 500 cycles at 1 A g−1 in CLCS@Li|SeS2. The unique design of CLCS may accelerate the application of Li metal anodes in commercial Li metal batteries.


Harmful Algae ◽  
2021 ◽  
pp. 101992
Author(s):  
Gustaaf Hallegraeff ◽  
Henrik Enevoldsen ◽  
Adriana Zingone

2021 ◽  
pp. 1-8
Author(s):  
Carina Wyborn ◽  
Elena Louder ◽  
Mike Harfoot ◽  
Samantha Hill

Summary Future global environmental change will have a significant impact on biodiversity through the intersecting forces of climate change, urbanization, human population growth, overexploitation, and pollution. This presents a fundamental challenge to conservation approaches, which seek to conserve past or current assemblages of species or ecosystems in situ. This review canvases diverse approaches to biodiversity futures, including social science scholarship on the Anthropocene and futures thinking alongside models and scenarios from the biophysical science community. It argues that charting biodiversity futures requires processes that must include broad sections of academia and the conservation community to ask what desirable futures look like, and for whom. These efforts confront political and philosophical questions about levels of acceptable loss, and how trade-offs can be made in ways that address the injustices in the distribution of costs and benefits across and within human and non-human life forms. As such, this review proposes that charting biodiversity futures is inherently normative and political. Drawing on diverse scholarship united under a banner of ‘futures thinking’ this review presents an array of methods, approaches and concepts that provide a foundation from which to consider research and decision-making that enables action in the context of contested and uncertain biodiversity futures.


Sign in / Sign up

Export Citation Format

Share Document