scholarly journals Modelling spinal locomotor circuits for movements in developing zebrafish

2021 ◽  
Author(s):  
Yann Roussel ◽  
Stephanie F. Gaudreau ◽  
Mohini Sengupta ◽  
Tuan V. Bui

ABSTRACTMany of the neural components of spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively construct models of zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce several developmental locomotor movements of zebrafish. The models replicate published experimental results examining the roles of synaptic excitation and inhibition and specific spinal populations to locomotor movements. Also, the models identify other possible mechanisms underlying the generation of locomotor movements by developing zebrafish. Notably, our modelling work demonstrates how the site of rhythm generation could transition between coiling and swimming, underlines the importance of contralateral excitation to multiple tail beats, and estimates the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights and firing behaviour.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yann Roussel ◽  
Stephanie F Gaudreau ◽  
Emily R Kacer ◽  
Mohini Sengupta ◽  
Tuan V Bui

Many spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively built models of developing zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce coiling and swimming movements. The neurons of the models were based upon morphologically or genetically identified populations in the developing zebrafish spinal cord. We simulated intact spinal circuits as well as circuits with silenced neurons or altered synaptic transmission to better understand the role of specific spinal neurons. Analysis of firing patterns and phase relationships helped identify possible mechanisms underlying the locomotor movements of developing zebrafish. Notably, our simulations demonstrated how the site and the operation of rhythm generation could transition between coiling and swimming. The simulations also underlined the importance of contralateral excitation to multiple tail beats. They allowed us to estimate the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights, length of ascending and descending axons, and firing behaviour. These models will serve as valuable tools to test and further understand the operation of spinal circuits for locomotion.


2019 ◽  
Author(s):  
Ryan S. Phillips ◽  
Jonathan E. Rubin

AbstractThe mechanism(s) of action of most commonly used pharmacological blockers of voltage-gated ion channels are well understood; however, this knowledge is rarely considered when interpreting experimental data. Effects of blockade are often assumed to be equivalent, regardless of the mechanism of the blocker involved. Using computer simulations, we demonstrate that this assumption may not always be correct. We simulate the blockade of a persistent sodium current (INaP), proposed to underlie rhythm generation in pre-Bötzinger complex (pre-BötC) respiratory neurons, via two distinct pharmacological mechanisms: (1) pore obstruction mediated by tetrodotoxin and (2) altered inactivation dynamics mediated by riluzole. The reported effects of experimental application of tetrodotoxin and riluzole in respiratory circuits are diverse and seemingly contradictory and have led to considerable debate within the field as to the specific role ofINaPin respiratory circuits. The results of our simulations match a wide array of experimental data spanning from the level of isolated pre-BötC neurons to the level of the intact respiratory network and also generate a series of experimentally testable predictions. Specifically, in this study we: (1) provide a mechanistic explanation for seemingly contradictory experimental results from in vitro studies ofINaPblock, (2) show that the effects ofINaPblock in in vitro preparations are not necessarily equivalent to those in more intact preparations, (3) demonstrate and explain why riluzole application may fail to effectively blockINaPin the intact respiratory network, and (4) derive the prediction that effective block ofINaPby low concentration tetrodotoxin will stop respiratory rhythm generation in the intact respiratory network. These simulations support a critical role forINaPin respiratory rhythmogenesis in vivo and illustrate the importance of considering mechanism when interpreting and simulating data relating to pharmacological blockade.Author summaryThe application of pharmacological agents that affect transmembrane ionic currents in neurons is a commonly used experimental technique. A simplistic interpretation of experiments involving these agents suggests that antagonist application removes the impacted current and that subsequently observed changes in activity are attributable to the loss of that current’s effects. The more complex reality, however, is that different drugs may have distinct mechanisms of action, some corresponding not to a removal of a current but rather to a changing of its properties. We use computational modeling to explore the implications of the distinct mechanisms associated with two drugs, riluzole and tetrodotoxin, that are often characterized as sodium channel blockers. Through this approach, we offer potential explanations for disparate findings observed in experiments on neural respiratory circuits and show that the experimental results are consistent with a key role for the persistent sodium current in respiratory rhythm generation.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


2013 ◽  
Vol 72 (2) ◽  
pp. 71-78
Author(s):  
Sophie Richardot

The aim of this study is to understand to what extent soliciting collective memory facilitates the appropriation of knowledge. After being informed about Milgram’s experiment on obedience to authority, students were asked to mention historical or contemporary events that came to mind while thinking about submission to authority. Main results of the factorial analysis show that the students who do not believe in the reproducibility of the experimental results oppose dramatic past events to a peaceful present, whereas those who do believe in the reproducibility of the results also mention dramatic contemporary events, thus linking past and present. Moreover, the students who do not accept the results for today personify historical events, whereas those who fully accept them generalize their impact. Therefore, according to their attitude toward this objet of knowledge, the students refer to two kinds of memory: a “closed memory,” which tends to relegate Milgram’s results to ancient history; and an “open memory,” which, on the contrary, transforms past events into a concept that helps them understand the present. Soliciting collective memory may contribute to the appropriation of knowledge provided the memory activated is an “open” one, linking past to present and going beyond the singularity of the event.


Sign in / Sign up

Export Citation Format

Share Document