scholarly journals Cholecystokinin 1 Receptor (Cck1R) Normalizes mTORC1 signaling and is Protective to Purkinje cells of SCA Mice

2021 ◽  
Author(s):  
Emily A.L. Wozniak ◽  
Zhao Chen ◽  
Sharan Paul ◽  
Praseuth Yang ◽  
Karla P. Figueroa ◽  
...  

SUMMARYSpinocerebellar Ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identified cerebellar up-regulation of the peptide hormone Cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. A Cck1R agonist, A71623 administered to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampened Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrected mTORC1 signaling and improved expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.

2020 ◽  
Vol 29 (19) ◽  
pp. 3249-3265
Author(s):  
Ravi Chopra ◽  
David D Bushart ◽  
John P Cooper ◽  
Dhananjay Yellajoshyula ◽  
Logan M Morrison ◽  
...  

Abstract Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


1991 ◽  
Vol 113 (5) ◽  
pp. 1145-1157 ◽  
Author(s):  
P D Walton ◽  
J A Airey ◽  
J L Sutko ◽  
C F Beck ◽  
G A Mignery ◽  
...  

Two intracellular calcium-release channel proteins, the inositol trisphosphate (InsP3), and ryanodine receptors, have been identified in mammalian and avian cerebellar Purkinje neurons. In the present study, biochemical and immunological techniques were used to demonstrate that these proteins coexist in the same avian Purkinje neurons, where they have different intracellular distributions. Western analyses demonstrate that antibodies produced against the InsP3 and the ryanodine receptors do not cross-react. Based on their relative rates of sedimentation in continuous sucrose gradients and SDS-PAGE, the avian cerebellar InsP3 receptor has apparent native and subunit molecular weights of approximately 1,000 and 260 kD, while those of the ryanodine receptors are approximately 2,000 and 500 kD. Specific [3H]InsP3- and [3H]ryanodine-binding activities were localized in the sucrose gradient fractions enriched in the 260-kD and the approximately 500-kD polypeptides, respectively. Under equilibrium conditions, cerebellar microsomes bound [3H]InsP3 with a Kd of 16.8 nM and Bmax of 3.8 pmol/mg protein; whereas, [3H]ryanodine was bound with a Kd of 1.5 nM and a capacity of 0.08 pmol/mg protein. Immunolocalization techniques, applied at both the light and electron microscopic levels, revealed that the InsP3 and ryanodine receptors have overlapping, yet distinctive intracellular distributions in avian Purkinje neurons. Most notably the InsP3 receptor is localized in endomembranes of the dendritic tree, in both the shafts and spines. In contrast, the ryanodine receptor is observed in dendritic shafts, but not in the spines. Both receptors appear to be more abundant at main branch points of the dendritic arbor. In Purkinje neuron cell bodies, both the InsP3 and ryanodine receptors are present in smooth and rough ER, subsurface membrane cisternae and to a lesser extent in the nuclear envelope. In some cases the receptors coexist in the same membranes. Neither protein is observed at the plasma membrane, Golgi complex or mitochondrial membranes. Both the InsP3 and ryanodine receptors are associated with intracellular membrane systems in axonal processes, although they are less abundant there than in dendrites. These data demonstrate that InsP3 and ryanodine receptors exist as unique proteins in the same Purkinje neuron. These calcium-release channels appear to coexist in ER membranes in most regions of the Purkinje neurons, but importantly they are differentially distributed in dendritic processes, with the dendritic spines containing only InsP3 receptors.


Author(s):  
Ravi Chopra ◽  
David D Bushart ◽  
John P Cooper ◽  
Dhananjay Yellajoshyula ◽  
Logan M Morrison ◽  
...  

AbstractSelective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 corepressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


JCI Insight ◽  
2020 ◽  
Vol 5 (19) ◽  
Author(s):  
Jianxue Li ◽  
Evan Y. Snyder ◽  
Fenny H.F. Tang ◽  
Renata Pasqualini ◽  
Wadih Arap ◽  
...  

2018 ◽  
Vol 115 (52) ◽  
pp. E12407-E12416 ◽  
Author(s):  
Alexander S. Brown ◽  
Pratap Meera ◽  
Banu Altindag ◽  
Ravi Chopra ◽  
Emma M. Perkins ◽  
...  

The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 361
Author(s):  
Hui Sun ◽  
Xiao-Rong Shen ◽  
Zi-Bing Fang ◽  
Zong-Zhi Jiang ◽  
Xiao-Jing Wei ◽  
...  

Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot–Marie–Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.


2020 ◽  
Author(s):  
Camille Ravel-Godreuil ◽  
Olivia Massiani-Beaudoin ◽  
Philippe Mailly ◽  
Alain Prochiantz ◽  
Rajiv L. Joshi ◽  
...  

AbstractHeterochromatin disorganization is a key hallmark of aging and DNA methylation state is currently the main molecular predictor of chronological age. The most frequent neurodegenerative diseases like Parkinson disease and Alzheimer’s disease are age-related but how the aging process and chromatin alterations are linked to neurodegeneration is unknown. Here, we investigated the consequences of viral overexpression of Gadd45b, a multifactorial protein involved in active DNA demethylation, in the midbrain of wild-type mice. Gadd45b overexpression induces global and stable changes in DNA methylation, particularly on gene bodies of genes related to neuronal functions. DNA methylation changes were accompanied by perturbed H3K9me3-marked heterochromatin and increased DNA damage. Prolonged Gadd45b expression resulted in dopaminergic neuron degeneration accompanied by altered expression of candidate genes related to heterochromatin maintenance, DNA methylation or Parkinson disease. Gadd45b overexpression rendered midbrain dopaminergic neurons more vulnerable to acute oxidative stress. Heterochromatin disorganization and DNA demethylation resulted in derepression of mostly young LINE-1 transposable elements, a potential source of DNA damage, prior to Gadd45b-induced neurodegeneration. Our data implicate that alterations in DNA methylation and heterochromatin organization, LINE-1 derepression and DNA damage can represent important contributors in the pathogenic mechanisms of dopaminergic neuron degeneration with potential implications for Parkinson disease.


2020 ◽  
Author(s):  
Maximillian A. Rogers ◽  
Catherine C.Y. Chang ◽  
Robert A. Maue ◽  
Elaina M. Melton ◽  
Andrew A. Peden ◽  
...  

AbstractNiemann-Pick type C (NPC) is a neurological disorder with no cure. NPC proteins deliver cholesterol from endosomes to other compartments including trans-Golgi network (TGN) and endoplasmic reticulum (ER). Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a resident ER enzyme that converts cholesterol to cholesteryl esters for storage. Here, we report the surprising finding that in a mutant Npc1 mice, Acat1-deficiency delayed the onset of weight loss and declining motor skill, prolonged lifespan, delayed Purkinje neuron death, and improved hepatosplenic pathology. Furthermore, syntaxin 6, a cholesterol-binding t-SNARE normally localized to TGN, is mislocalized in mutant NPC cells. However, upon ACAT1 inhibition this mislocalization is corrected, and increase the level of a few proteins further downstream. Our results imply that ACAT1 inhibition diverts a cholesterol storage pool in a way that replenished the low cholesterol level in NPC-deficient TGN. Taking together, we identify ACAT1 inhibition as a potential therapeutic target for NPC treatment.


2021 ◽  
Vol 22 (12) ◽  
pp. 6493
Author(s):  
Elizabeta Nemeth ◽  
Tomas Ganz

Despite its abundance in the environment, iron is poorly bioavailable and subject to strict conservation and internal recycling by most organisms. In vertebrates, the stability of iron concentration in plasma and extracellular fluid, and the total body iron content are maintained by the interaction of the iron-regulatory peptide hormone hepcidin with its receptor and cellular iron exporter ferroportin (SLC40a1). Ferroportin exports iron from duodenal enterocytes that absorb dietary iron, from iron-recycling macrophages in the spleen and the liver, and from iron-storing hepatocytes. Hepcidin blocks iron export through ferroportin, causing hypoferremia. During iron deficiency or after hemorrhage, hepcidin decreases to allow iron delivery to plasma through ferroportin, thus promoting compensatory erythropoiesis. As a host defense mediator, hepcidin increases in response to infection and inflammation, blocking iron delivery through ferroportin to blood plasma, thus limiting iron availability to invading microbes. Genetic diseases that decrease hepcidin synthesis or disrupt hepcidin binding to ferroportin cause the iron overload disorder hereditary hemochromatosis. The opposite phenotype, iron restriction or iron deficiency, can result from genetic or inflammatory overproduction of hepcidin.


Sign in / Sign up

Export Citation Format

Share Document