cck1 receptor
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
pp. 579-590
Author(s):  
Zdenko Pirník ◽  
Lucia Kořínková ◽  
Jana Osacká ◽  
Blanka Železná ◽  
Jaroslav Kuneš ◽  
...  

Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.


PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001295
Author(s):  
Jesse I. Mobbs ◽  
Matthew J. Belousoff ◽  
Kaleeckal G. Harikumar ◽  
Sarah J. Piper ◽  
Xiaomeng Xu ◽  
...  

G protein–coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs. As seen with other Gq/11–GPCR complexes, the Gq–α5 helix (αH5) bound to a relatively narrow pocket in the CCK1R core. Surprisingly, the backbone of the CCK1R and volume of the G protein binding pocket were essentially equivalent when Gs was bound, with the Gs αH5 displaying a conformation that arises from “unwinding” of the far carboxyl-terminal residues, compared to canonically Gs coupled receptors. Thus, integrated changes in the conformations of both the receptor and G protein are likely to play critical roles in the promiscuous coupling of individual GPCRs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Neil Tanday ◽  
Andrew English ◽  
Ryan A. Lafferty ◽  
Peter R. Flatt ◽  
Nigel Irwin

Combined activation of GLP-1 and CCK1 receptors has potential to synergistically augment the appetite-suppressive and glucose homeostatic actions of the individual parent peptides. In the current study, pancreatic beta-cell benefits of combined GLP-1 and CCK1 receptor upregulation were established, before characterising bioactivity and antidiabetic efficacy of an acylated dual-acting GLP-1/CCK hybrid peptide, namely [Lys12Pal]Ex-4/CCK. Both exendin-4 and CCK exhibited (p<0.001) proliferative and anti-apoptotic effects in BRIN BD11 beta-cells. Proliferative benefits were significantly (p<0.01) augmented by combined peptide treatment when compared to either parent peptide alone. These effects were linked to increases (p<0.001) in GLUT2 and glucokinase beta-cell gene expression, with decreased (p<0.05-p<0.001) expression of NFκB and BAX. [Lys12Pal]Ex-4/CCK exhibited prominent insulinotropic actions in vitro, coupled with beneficial (p<0.001) satiety and glucose homeostatic effects in the mice, with bioactivity evident 24 h after administration. Following twice daily injection of [Lys12Pal]Ex-4/CCK for 28 days in diabetic high fat fed (HFF) mice with streptozotocin (STZ)-induced compromised beta-cells, there were clear reductions (p<0.05-p<0.001) in energy intake and body weight. Circulating glucose was returned to lean control concentrations, with associated increases (p<0.001) in plasma and pancreatic insulin levels. Glucose tolerance and insulin secretory responsiveness were significantly (p<0.05-p<0.001) improved by hybrid peptide therapy. In keeping with this, evaluation of pancreatic histology revealed restoration of normal islet alpha- to beta-cell ratios and reduction (p<0.01) in centralised islet glucagon staining. Improvements in pancreatic islet morphology were associated with increased (p<0.05) proliferation and reduced (p<0.001) apoptosis of beta-cells. Together, these data highlight the effectiveness of sustained dual GLP-1 and CCK1 receptor activation by [Lys12Pal]Ex-4/CCK for the treatment of obesity-related diabetes.


2021 ◽  
Author(s):  
Emily A.L. Wozniak ◽  
Zhao Chen ◽  
Sharan Paul ◽  
Praseuth Yang ◽  
Karla P. Figueroa ◽  
...  

SUMMARYSpinocerebellar Ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identified cerebellar up-regulation of the peptide hormone Cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. A Cck1R agonist, A71623 administered to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampened Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrected mTORC1 signaling and improved expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Margery Beinfeld ◽  
Quan Chen ◽  
Fan Gao ◽  
Roger A. Liddle ◽  
Laurence J. Miller ◽  
...  

Cholecystokinin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on CCK receptors [89]) are activated by the endogenous peptides cholecystokinin-8 (CCK-8), CCK-33, CCK-58 and gastrin (gastrin-17). There are only two distinct subtypes of CCK receptors, CCK1 and CCK2 receptors [63, 123], with some alternatively spliced forms most often identified in neoplastic cells. The CCK receptor subtypes are distinguished by their peptide selectivity, with the CCK1 receptor requiring the carboxyl-terminal heptapeptide-amide that includes a sulfated tyrosine for high affinity and potency, while the CCK2 receptor requires only the carboxyl-terminal tetrapeptide shared by each CCK and gastrin peptides. These receptors have characteristic and distinct distributions, with both present in both the central nervous system and peripheral tissues.


Life Sciences ◽  
2018 ◽  
Vol 209 ◽  
pp. 210-216 ◽  
Author(s):  
H.X. Ren ◽  
Q.C. Tang ◽  
L. Yan ◽  
H. Xia ◽  
H.S. Luo

2018 ◽  
Vol 24 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Lijing Hao ◽  
Di Wen ◽  
Hongyan Gou ◽  
Feng Yu ◽  
Bin Cong ◽  
...  

2016 ◽  
Vol 31 (2) ◽  
pp. 288-293 ◽  
Author(s):  
Beatriz Lobo ◽  
Jordi Serra ◽  
Massimo D'Amato ◽  
Lucio Rovati ◽  
Juan-R. Malagelada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document