scholarly journals Visual Cortical Area MT is Required for Development of the Dorsal Stream and Associated Visuomotor Behaviours

2021 ◽  
Author(s):  
William C. Kwan ◽  
Chia-Kang Chang ◽  
Hsin-Hao Yu ◽  
Inaki C. Mundinano ◽  
Dylan M. Fox ◽  
...  

AbstractThe middle temporal (MT) area of the extrastriate visual cortex has long been studied in adulthood for its distinctive physiological properties and function as a part of the dorsal stream, yet interestingly possesses a similar maturation profile as the primary visual cortex (V1). Here we examined whether an early-life lesion of MT altered the dorsal stream development and the behavioural precision of reaching to grasp sequences. We observed permanent changes in the anatomy of cortices associated with both reaching (PE and MIP) and grasping (AIP), as well as in reaching and grasping behaviours. In addition, we observed a significant impact on the anatomy of V1 and the direction sensitivity of V1 neurons in the lesion projection zone. These findings indicate that area MT is a crucial node for the development of the primate vision, impacting both V1 and areas in the dorsal visual pathway known to mediate visually guided manual behaviours.TeaserThe early life loss of visual area MT leads to significant anatomical, physiological and behavioural changes.

2021 ◽  
pp. JN-RM-0824-21
Author(s):  
William C. Kwan ◽  
Chia-Kang Chang ◽  
Hsin-Hao Yu ◽  
Inaki C. Mundinano ◽  
Dylan M. Fox ◽  
...  

Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 64-69 ◽  
Author(s):  
Riccardo Beltramo ◽  
Massimo Scanziani

Visual responses in the cerebral cortex are believed to rely on the geniculate input to the primary visual cortex (V1). Indeed, V1 lesions substantially reduce visual responses throughout the cortex. Visual information enters the cortex also through the superior colliculus (SC), but the function of this input on visual responses in the cortex is less clear. SC lesions affect cortical visual responses less than V1 lesions, and no visual cortical area appears to entirely rely on SC inputs. We show that visual responses in a mouse lateral visual cortical area called the postrhinal cortex are independent of V1 and are abolished upon silencing of the SC. This area outperforms V1 in discriminating moving objects. We thus identify a collicular primary visual cortex that is independent of the geniculo-cortical pathway and is capable of motion discrimination.


2018 ◽  
Author(s):  
A. Hauswald ◽  
C. Lithari ◽  
O. Collignon ◽  
E. Leonardelli ◽  
N. Weisz

AbstractSuccessful lip reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g. [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex, that is, whether this structure tracks the acoustic signal in a functionally relevant manner. In order to elucidate this, we investigated how the cortex tracks (i.e. entrains) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input especially from left premotor, primary motor, somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of visual cortex stemming from these regions partially correlates with the strength of entrainment to absent acoustic forward speech envelope but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3–5], influence how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements.HighlightsVisual cortex tracks better forward than backward unheard acoustic speech envelopeEffects not “trivially” caused by correlation of visual with acoustic signalStronger top-down control of visual cortex during forward display of lip movementsTop-down influence correlates with visual cortical entrainment effectResults seem to reflect visuo-phonological mapping processes


2019 ◽  
Author(s):  
Yosef Singer ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

Visual neurons respond selectively to specific features that become increasingly complex in their form and dynamics from the eyes to the cortex. Retinal neurons prefer localized flashing spots of light, primary visual cortical (V1) neurons moving bars, and those in higher cortical areas, such as middle temporal (MT) cortex, favor complex features like moving textures. Whether there are general computational principles behind this diversity of response properties remains unclear. To date, no single normative model has been able to account for the hierarchy of tuning to dynamic inputs along the visual pathway. Here we show that hierarchical application of temporal prediction - representing features that efficiently predict future sensory input from past sensory input - can explain how neuronal tuning properties, particularly those relating to motion, change from retina to higher visual cortex. This suggests that the brain may not have evolved to efficiently represent all incoming information, as implied by some leading theories. Instead, the selective representation of sensory inputs that help in predicting the future may be a general neural coding principle, which when applied hierarchically extracts temporally-structured features that depend on increasingly high-level statistics of the sensory input.


2018 ◽  
Author(s):  
Arbora Resulaj ◽  
Sarah Ruediger ◽  
Shawn R. Olsen ◽  
Massimo Scanziani

AbstractVisually guided perceptual decisions involve the sequential activation of a hierarchy of cortical areas. It has been hypothesized that a brief time window of activity in each area is sufficient to enable the decision but direct measurements of this time window are lacking. To address this question, we develop a visual discrimination task in mice that depends on visual cortex and in which we precisely control the time window of visual cortical activity as the animal performs the task at different levels of difficulty. We show that threshold duration of activity in visual cortex enabling perceptual discrimination is between 40 and 80 milliseconds. During this time window the vast majority of neurons discriminating the stimulus fire one or no spikes and less than 16% fire more than two. This result establishes that the firing of the first visually evoked spikes in visual cortex is sufficient to enable a perceptual decision.


2005 ◽  
Vol 8 (7) ◽  
pp. 969-969
Author(s):  
Carey Megan R ◽  
Medina Javier F ◽  
Lisberger Stephen G

Author(s):  
Claus–C. Hilgetag ◽  
Simon Grant

In many studies of the mammalian brain, subjective assessments of connectivity patterns and connection strengths have been used to subdivide the cortex into separate but linked areas and to make deductions about the flow of information through the cortical network. Here we describe the results of applying statistical analyses to quantitative corticocortical connection data, and the conclusions that can be drawn from such quantitative approaches. Injections of the tracer WGA–HRP were made into different visual areas either side of the middle suprasylvian sulcus (MSS) in 11 adult cats. Retrogradely labelled cells produced by these injections were counted in selected coronal sections taken at regularly spaced intervals (1mm) through the entire visual cortex, and their cumulative sums and relative proportions in each of 16 recognized visual cortical areas were computed. The surface dimensions of these areas were measured in each cat, from contour lines made on enlarged drawings of the same sections. A total of 116149 labelled neurons were assigned to all visual cortical areas in the 11 cats, with 5212 others excluded because of their uncertain location. The distribution of relative connection strengths, that is, the percentage of labelled cells per cortical area, was evaluated using non–parametric cluster analyses and Monte Carlo simulation, and relationships between connection strength and area size were examined by linear regression. The absolute size of each visual cortical area was uniform across individual cats, whereas the strengths of connections between the same area pairs were extremely variable for injections in different animals. The overall distribution of labelling strengths for corticocortical connections was continuous and monotonic, rather than inherently clustered, with the highest frequencies presented by the absent (zero density) and the very–low–density connections. These two categories could not, on analytical grounds, be separated from each other. Thus it seems that any subjective description of corticocortical connectivity strengths by ordinal classes (such as ‘absent’,‘weak’,‘moderate’ or ‘strong’) imposes a categorization on the data, rather than recognizes a structure inherent in the data themselves. Despite the great variability of connections, similarities in the distribution profiles for the relative strengths of labelled cells in all areas could be used to identify clusters of different injection sites in the MSS. This supported the conclusion that there are four connectionally distinct subdivisions of this cortex, corresponding to areas 21a, PMLS and AMLS (in the medial bank) and to area PLLS (in the lateral bank). Even for tracer deposits in the same cortical subdivision, however, the strength of connections projecting to the site from other cortical areas varied greatly across injection in different individual animals. W e further demonstrated that, on average, the strength of connections originating from any given cortical area was positively and linearly correlated with the size of its surface dimensions. When analysed by specific injection site location, however, this relationship was shown to hold for the individual connections to the medial bank MSS areas, but not for connections leading to the lateral bank area. The data suggest that connectivity of the cat's visual cortex possesses a number of uniform global features, which are locally organized in such a way as to give each cortical area unique characteristics.


Sign in / Sign up

Export Citation Format

Share Document