scholarly journals Hierarchical temporal prediction captures motion processing from retina to higher visual cortex

2019 ◽  
Author(s):  
Yosef Singer ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

Visual neurons respond selectively to specific features that become increasingly complex in their form and dynamics from the eyes to the cortex. Retinal neurons prefer localized flashing spots of light, primary visual cortical (V1) neurons moving bars, and those in higher cortical areas, such as middle temporal (MT) cortex, favor complex features like moving textures. Whether there are general computational principles behind this diversity of response properties remains unclear. To date, no single normative model has been able to account for the hierarchy of tuning to dynamic inputs along the visual pathway. Here we show that hierarchical application of temporal prediction - representing features that efficiently predict future sensory input from past sensory input - can explain how neuronal tuning properties, particularly those relating to motion, change from retina to higher visual cortex. This suggests that the brain may not have evolved to efficiently represent all incoming information, as implied by some leading theories. Instead, the selective representation of sensory inputs that help in predicting the future may be a general neural coding principle, which when applied hierarchically extracts temporally-structured features that depend on increasingly high-level statistics of the sensory input.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Behrad Noudoost ◽  
Kelsey Lynne Clark ◽  
Tirin Moore

Visually guided behavior relies on the integration of sensory input and information held in working memory (WM). Yet it remains unclear how this is accomplished at the level of neural circuits. We studied the direct visual cortical inputs to neurons within a visuomotor area of prefrontal cortex in behaving monkeys. We show that the efficacy of visual input to prefrontal cortex is gated by information held in WM. Surprisingly, visual input to prefrontal neurons was found to target those with both visual and motor properties, rather than preferentially targeting other visual neurons. Furthermore, activity evoked from visual cortex was larger in magnitude, more synchronous, and more rapid, when monkeys remembered locations that matched the location of visual input. These results indicate that WM directly influences the circuitry that transforms visual input into visually guided behavior.


2004 ◽  
Vol 91 (6) ◽  
pp. 2859-2873 ◽  
Author(s):  
Matthew S. Caywood ◽  
Benjamin Willmore ◽  
David J. Tolhurst

It has been hypothesized that mammalian sensory systems are efficient because they reduce the redundancy of natural sensory input. If correct, this theory could unify our understanding of sensory coding; here, we test its predictions for color coding in the primate primary visual cortex (V1). We apply independent component analysis (ICA) to simulated cone responses to natural scenes, obtaining a set of colored independent component (IC) filters that form a redundancy-reducing visual code. We compare IC filters with physiologically measured V1 neurons, and find great spatial similarity between IC filters and V1 simple cells. On cursory inspection, there is little chromatic similarity; however, we find that many apparent differences result from biases in the physiological measurements and ICA analysis. After correcting these biases, we find that the chromatic tuning of IC filters does indeed resemble the population of V1 neurons, supporting the redundancy-reduction hypothesis.


2010 ◽  
Vol 22 (6) ◽  
pp. 1235-1243 ◽  
Author(s):  
Marieke L. Schölvinck ◽  
Geraint Rees

Motion-induced blindness (MIB) is a visual phenomenon in which highly salient visual targets spontaneously disappear from visual awareness (and subsequently reappear) when superimposed on a moving background of distracters. Such fluctuations in awareness of the targets, although they remain physically present, provide an ideal paradigm to study the neural correlates of visual awareness. Existing behavioral data on MIB are consistent both with a role for structures early in visual processing and with involvement of high-level visual processes. To further investigate this issue, we used high field functional MRI to investigate signals in human low-level visual cortex and motion-sensitive area V5/MT while participants reported disappearance and reappearance of an MIB target. Surprisingly, perceptual invisibility of the target was coupled to an increase in activity in low-level visual cortex plus area V5/MT compared with when the target was visible. This increase was largest in retinotopic regions representing the target location. One possibility is that our findings result from an active process of completion of the field of distracters that acts locally in the visual cortex, coupled to a more global process that facilitates invisibility in general visual cortex. Our findings show that the earliest anatomical stages of human visual cortical processing are implicated in MIB, as with other forms of bistable perception.


2021 ◽  
Vol 14 ◽  
Author(s):  
Huijun Pan ◽  
Shen Zhang ◽  
Deng Pan ◽  
Zheng Ye ◽  
Hao Yu ◽  
...  

Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat’s high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II–III, IV, V, and VI, with a higher proportion in layer II–III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support “reverse hierarchy theory” or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.


2021 ◽  
Vol 15 ◽  
Author(s):  
Takahiro Gotou ◽  
Katsuro Kameyama ◽  
Ayane Kobayashi ◽  
Kayoko Okamura ◽  
Takahiko Ando ◽  
...  

Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function.


2008 ◽  
Vol 23 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Amy Brodtmann ◽  
Aina Puce ◽  
David Darby ◽  
Geoffrey Donnan

Purpose. Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Methods. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. Results. The results from 24 healthy control individuals (mean age 65.7 ± SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 ± SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. Conclusions. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.


2019 ◽  
Author(s):  
Kevin K. Sit ◽  
Michael J. Goard

ABSTRACTPerception of visual motion is important for a range of ethological behaviors in mammals. In primates, specific higher visual cortical regions are specialized for processing of coherent visual motion. However, the distribution of motion processing among visual cortical areas in mice is unclear, despite the powerful genetic tools available for measuring population neural activity. Here, we used widefield and 2-photon calcium imaging of transgenic mice expressing a calcium indicator in excitatory neurons to measure mesoscale and cellular responses to coherent motion across the visual cortex. Imaging of primary visual cortex (V1) and several higher visual areas (HVAs) during presentation of natural movies and random dot kinematograms (RDKs) revealed heterogeneous responses to coherent motion. Although coherent motion responses were observed throughout visual cortex, particular HVAs in the putative dorsal stream (PM, AL, AM) exhibited stronger responses than ventral stream areas (LM and LI). Moreover, beyond the differences between visual areas, there was considerable heterogeneity within each visual area. Individual visual areas exhibited an asymmetry across the vertical retinotopic axis (visual elevation), such that neurons representing the inferior visual field exhibited greater responses to coherent motion. These results indicate that processing of visual motion in mouse cortex is distributed unevenly across visual areas and exhibits a spatial bias within areas, potentially to support processing of optic flow during spatial navigation.


2017 ◽  
Vol 114 (32) ◽  
pp. 8637-8642 ◽  
Author(s):  
Hualou Liang ◽  
Xiajing Gong ◽  
Minggui Chen ◽  
Yin Yan ◽  
Wu Li ◽  
...  

Perceptual grouping of line segments into object contours has been thought to be mediated, in part, by long-range horizontal connectivity intrinsic to the primary visual cortex (V1), with a contribution by top-down feedback projections. To dissect the contributions of intraareal and interareal connections during contour integration, we applied conditional Granger causality analysis to assess directional influences among neural signals simultaneously recorded from visual cortical areas V1 and V4 of monkeys performing a contour detection task. Our results showed that discounting the influences from V4 markedly reduced V1 lateral interactions, indicating dependence on feedback signals of the effective connectivity within V1. On the other hand, the feedback influences were reciprocally dependent on V1 lateral interactions because the modulation strengths from V4 to V1 were greatly reduced after discounting the influences from other V1 neurons. Our findings suggest that feedback and lateral connections closely interact to mediate image grouping and segmentation.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5821
Author(s):  
Robert-Gabriel Lupu ◽  
Oana Mitruț ◽  
Andrei Stan ◽  
Florina Ungureanu ◽  
Kyriaki Kalimeri ◽  
...  

This paper presented the assessment of cognitive load (as an effective real-time index of task difficulty) and the level of brain activation during an experiment in which eight visually impaired subjects performed two types of tasks while using the white cane and the Sound of Vision assistive device with three types of sensory input—audio, haptic, and multimodal (audio and haptic simultaneously). The first task was to identify object properties and the second to navigate and avoid obstacles in both the virtual environment and real-world settings. The results showed that the haptic stimuli were less intuitive than the audio ones and that the navigation with the Sound of Vision device increased cognitive load and working memory. Visual cortex asymmetry was lower in the case of multimodal stimulation than in the case of separate stimulation (audio or haptic). There was no correlation between visual cortical activity and the number of collisions during navigation, regardless of the type of navigation or sensory input. The visual cortex was activated when using the device, but only for the late-blind users. For all the subjects, the navigation with the Sound of Vision device induced a low negative valence, in contrast with the white cane navigation.


2021 ◽  
Vol 15 ◽  
Author(s):  
William H. Nesse ◽  
Zahra Bahmani ◽  
Kelsey Clark ◽  
Behrad Noudoost

Extrastriate visual neurons show no firing rate change during a working memory (WM) task in the absence of sensory input, but both αβ oscillations and spike phase locking are enhanced, as is the gain of sensory responses. This lack of change in firing rate is at odds with many models of WM, or attentional modulation of sensory networks. In this article we devised a computational model in which this constellation of results can be accounted for via selective activation of inhibitory subnetworks by a top-down working memory signal. We confirmed the model prediction of selective inhibitory activation by segmenting cells in the experimental neural data into putative excitatory and inhibitory cells. We further found that this inhibitory activation plays a dual role in influencing excitatory cells: it both modulates the inhibitory tone of the network, which underlies the enhanced sensory gain, and also produces strong spike-phase entrainment to emergent network oscillations. Using a phase oscillator model we were able to show that inhibitory tone is principally modulated through inhibitory network gain saturation, while the phase-dependent efficacy of inhibitory currents drives the phase locking modulation. The dual contributions of the inhibitory subnetwork to oscillatory and non-oscillatory modulations of neural activity provides two distinct ways for WM to recruit sensory areas, and has relevance to theories of cortical communication.


Sign in / Sign up

Export Citation Format

Share Document