scholarly journals A Dose-Response Model and D10-Value for Mycobacterium tuberculosis Exposed to Dosimetrically Verified Ionizing Radiation

2021 ◽  
Author(s):  
Jackson V Watkins ◽  
Justin Bell ◽  
Phillip Knabenbauer ◽  
Alexander Brandl ◽  
Karen M Dobos

AbstractTechniques for pathogen inactivation have been employed by laboratories to help ease the financial, physical, and health strains associated with (A)BSL-3 work. Exposure to radiation is the most common and useful of these methods to inactivate pathogens grown in large-scale culture. While robust protocols exist for radiation exposure techniques, there are variances in methods used to determine the radiation dose and dose rate required to inactivate pathogens. Furthermore, previous studies often do not include radiation dosimetry verification or address corresponding dosimetry uncertainties for dose response-assays. Accordingly, this study was conducted with the purpose of completing a dosimetry assessment of the radiation field within the sample chamber of a sealed source irradiator, to subsequently determine the radiation dose required to inactivate pathogenic cultures. Physical dosimetry techniques (Fricke dosimetry, ion chamber measurements, and measurements with thermoluminescent dosimeters) were used to measure dose rate and rate variances within the sample chamber. By comparing the variances between the dosimetry methodologies and measurements, an estimated dose rate within the sample chamber was determined. The results of the dosimetry evaluation were used to determine the radiation dose samples of Mycobacterium tuberculosis received, to accurately associate biological markers of inactivation to specific doses of ionizing radiation. A D10 value and dose-response curve were developed to describe the inactivation of Mtb from increasing doses of ionizing radiation. The D10 value is experimentally relevant for comparative analysis and potentially provides a biological baseline for inactivation verification. This methodology can also easily be translated to other pathogen models.ImportanceThis work set out to give us a better understanding of how much radiation is required to inactivate Mycobacterium tuberculosis, the bacteria that causes tuberculosis disease. Radiation dose from a source is not something that can just be inputted, it must be calculated, so we also determined the approximate dose from the source to address ambiguities that had previously existed while inactivating microbes. We were able to generate an accurate description of inactivation of Mycobacterium tuberculosis by correlating it with a value representing 90% death of the treated cells. We also unexpectedly discovered that very low levels of radiation increase certain activity within the cell. This is important because it allows us to better understand how radiation kills Mycobacterium tuberculosis, and gives us a value to compare to other organisms. It also offers other researchers a method to use under their own specific conditions.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Ning Liu ◽  
Yang Peng ◽  
Xinguang Zhong ◽  
Zheng Ma ◽  
Suiping He ◽  
...  

Abstract Background Numerous studies have concentrated on high-dose radiation exposed accidentally or through therapy, and few involve low-dose occupational exposure, to investigate the correlation between low-dose ionizing radiation and changing hematological parameters among medical workers. Methods Using a prospective cohort study design, we collected health examination reports and personal dose monitoring data from medical workers and used Poisson regression and restricted cubic spline models to assess the correlation between changing hematological parameters and cumulative radiation dose and determine the dose-response relationship. Results We observed that changing platelet of 1265 medical workers followed up was statistically different among the cumulative dose groups (P = 0.010). Although the linear trend tested was not statistically significant (Ptrend = 0.258), the non-linear trend tested was statistically significant (Pnon-linear = 0.007). Overall, there was a correlation between changing platelets and cumulative radiation dose (a change of βa 0.008 × 109/L during biennially after adjusting for gender, age at baseline, service at baseline, occupation, medical level, and smoking habits; 95% confidence interval [CI] = 0.003,0.014 × 109/L). Moreover, we also found positive first and then negative dose-response relationships between cumulative radiation dose and changing platelets by restricted cubic spline models, while there were negative patterns of the baseline service not less than 10 years (− 0.015 × 109/L, 95% CI = − 0.024, − 0.007 × 109/L) and radiation nurses(− 0.033 × 109/L, 95% CI = − 0.049, − 0.016 × 109/L). Conclusion We concluded that although the exposure dose was below the limit, medical workers exposed to low-dose ionizing radiation for a short period of time might have increased first and then decreased platelets, and there was a dose-response relationship between the cumulative radiation dose and platelets changing.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 661-669 ◽  
Author(s):  
JD Down ◽  
NJ Tarbell ◽  
HD Thames ◽  
PM Mauch

Abstract Murine bone marrow chimera models were used to assess the efficacy of host total body irradiation (TBI) given at different doses, dose rates, and fractionation schemes in providing for engraftment of syngeneic and allogeneic bone marrow. B6-Hbbd congenic and LP mice, respectively, were used as donors (10(7) bone marrow cells) for syngeneic and allogenic (H-2 compatible) transplantation in standard B6 recipients. Stable marrow chimerism was determined from host and donor stem cell- derived hemoglobin phenotypes (Hbbs and Hbbd) on gel electrophoresis at 3 months posttransplant. Partial engraftment of syngeneic marrow was seen at single doses as low as 2 Gy, with the donor component increasing steadily with increasing TBI dose to a level of 100% at 7 Gy. Immunologic resistance of the host appeared to prevent allogeneic engraftment until 5.5 Gy. A very steep radiation dose response was then observed so that the level of chimerism with 6 Gy and above became comparable with syngeneic engraftment. Low dose rate (5 cGy minute-1) and fractionated TBI required higher total doses for equivalent engraftment (radiation dose-sparing) in both syngeneic and allogenic bone marrow transplantation. This displacement in the dose-response curve on fractionation was seen with interfraction intervals of 3 and 6 hours. A further dose-sparing effect was observed on extending the interval to 18 and 24 hours, but only for allogeneic transplantation, and may therefore be related to recovery of immune-mediated graft resistance. The involvement of multiple target cell populations in determining allogenic engraftment rendered the application of the linear-quadratic model for radiation cell survival problematic in this case. The recovery in dose when low dose rate and 6-hour interfraction intervals were applied in either syngeneic or allogeneic BMT is consistent with appreciable sub-lethal damage repair in the primitive self-renewing stem cell population of the host marrow. These results contrast with the poor repair capacity of the 11-day spleen colony- forming units (CFUs) population after fractionated irradiation and support the notion that ablation of early stem cells in the pre-CFUs compartment is essential for long-term marrow engraftment.


1960 ◽  
Vol 38 (3) ◽  
pp. 326-330
Author(s):  
E. A. Sellers

Radiation is similar to other environmental changes in that the response or injury produced bears a relationship to the degree of stimulus. A time–dose relationship also exists. It differs from other environmental changes in that many more cells of the body remote from the skin surface are affected. The effects depend on absorbed tissue dose and on dose rate. These dosage factors, the varying sensitivity of the tissues, and differing rates of repair account for the phasic pattern of symptoms and tissue damage which follow radiation. Compared with other stressors (especially chemical) the dose–response curve after radiation is steep. The somatic effects of radiation are the sequelae of the specific molecular injury produced by ionization rather than the primary lesions themselves.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 661-669 ◽  
Author(s):  
JD Down ◽  
NJ Tarbell ◽  
HD Thames ◽  
PM Mauch

Murine bone marrow chimera models were used to assess the efficacy of host total body irradiation (TBI) given at different doses, dose rates, and fractionation schemes in providing for engraftment of syngeneic and allogeneic bone marrow. B6-Hbbd congenic and LP mice, respectively, were used as donors (10(7) bone marrow cells) for syngeneic and allogenic (H-2 compatible) transplantation in standard B6 recipients. Stable marrow chimerism was determined from host and donor stem cell- derived hemoglobin phenotypes (Hbbs and Hbbd) on gel electrophoresis at 3 months posttransplant. Partial engraftment of syngeneic marrow was seen at single doses as low as 2 Gy, with the donor component increasing steadily with increasing TBI dose to a level of 100% at 7 Gy. Immunologic resistance of the host appeared to prevent allogeneic engraftment until 5.5 Gy. A very steep radiation dose response was then observed so that the level of chimerism with 6 Gy and above became comparable with syngeneic engraftment. Low dose rate (5 cGy minute-1) and fractionated TBI required higher total doses for equivalent engraftment (radiation dose-sparing) in both syngeneic and allogenic bone marrow transplantation. This displacement in the dose-response curve on fractionation was seen with interfraction intervals of 3 and 6 hours. A further dose-sparing effect was observed on extending the interval to 18 and 24 hours, but only for allogeneic transplantation, and may therefore be related to recovery of immune-mediated graft resistance. The involvement of multiple target cell populations in determining allogenic engraftment rendered the application of the linear-quadratic model for radiation cell survival problematic in this case. The recovery in dose when low dose rate and 6-hour interfraction intervals were applied in either syngeneic or allogeneic BMT is consistent with appreciable sub-lethal damage repair in the primitive self-renewing stem cell population of the host marrow. These results contrast with the poor repair capacity of the 11-day spleen colony- forming units (CFUs) population after fractionated irradiation and support the notion that ablation of early stem cells in the pre-CFUs compartment is essential for long-term marrow engraftment.


Author(s):  
N. V. Sotnik ◽  
V. L. Rybkina ◽  
T. V. Azizova

Relevance. In case of emergency due to large-scale radiation accidents, biological dosimetry becomes a critical tool for early radiation dose assessment and enables identification of individuals exposed to ionizing radiation and facilitates further medical follow-up decisions.Intention. To assess the feasibility of a number of biological markers for bioindication and biodosimetry purposes based on literature data.Methodology. Literature sources were searched in MEDLINE databases, PubMed, CyberLeninka, elibrary.ru, using the terms: radiation, irradiation, biodosimetry. The review presents the results of studies from full-text sources of literature in English.Results and Discussion. Depending on an accidental exposure scenario, various biodosimetry techniques should be used to assess radiation doses with optimal accuracy and speed. In addition to physical methods and clinical techniques used to assess radiation doses, biological dosimetry defines a level of ionizing radiation exposure for certain individuals and is useful in making decisions about medical treatment strategy. To date, combined use of several biological markers within a biodosimetry system providing reliable radiation dose estimates.Conclusion. Analysis of the data presented in the review showed that combined use of several biological markers and development of a complex biodosimetric system will provide a more accurate estimate of doses, which is especially important in case of radiation accidents and incidents when physical dosimetry data are not available.


2011 ◽  
Vol 29 (4) ◽  
pp. 428-434 ◽  
Author(s):  
Masako Iwanaga ◽  
Wan-Ling Hsu ◽  
Midori Soda ◽  
Yumi Takasaki ◽  
Masayuki Tawara ◽  
...  

Purpose The risk of myelodysplastic syndromes (MDS) has not been fully investigated among people exposed to ionizing radiation. We investigate MDS risk and radiation dose-response in Japanese atomic bomb survivors. Patients and Methods We conducted a retrospective cohort study by using two databases of Nagasaki atomic bomb survivors: 64,026 people with known exposure distance in the database of Nagasaki University Atomic-Bomb Disease Institute (ABDI) and 22,245 people with estimated radiation dose in the Radiation Effects Research Foundation Life Span Study (LSS). Patients with MDS diagnosed from 1985 to 2004 were identified by record linkage between the cohorts and the Nagasaki Prefecture Cancer Registry. Cox and Poisson regression models were used to estimate relationships between exposure distance or dose and MDS risk. Results There were 151 patients with MDS in the ABDI cohort and 47 patients with MDS in the LSS cohort. MDS rate increased inversely with exposure distance, with an excess relative risk (ERR) decay per km of 1.2 (95% CI, 0.4 to 3.0; P < .001) for ABDI. MDS risk also showed a significant linear response to exposure dose level (P < .001) with an ERR per Gy of 4.3 (95% CI, 1.6 to 9.5; P < .001). After adjustment for sex, attained age, and birth year, the MDS risk was significantly greater in those exposed when young. Conclusion A significant linear radiation dose-response for MDS exists in atomic bomb survivors 40 to 60 years after radiation exposure. Clinicians should perform careful long-term follow-up of irradiated people to detect MDS as early as possible.


Sign in / Sign up

Export Citation Format

Share Document