scholarly journals Competitive binding of MatP and topoisomerase IV to the MukB dimerization hinge

2021 ◽  
Author(s):  
Gemma L. M. Fisher ◽  
Jani R. Bolla ◽  
Karthik V. Rajasekar ◽  
Jarno Mäkelä ◽  
Rachel Baker ◽  
...  

ABSTRACTSMC complexes have ubiquitous roles in chromosome organisation. In Escherichia coli, the interplay between the SMC complex, MukBEF, and matS-bound MatP in the replication termination region, ter, results in depletion of MukBEF from ter, thus promoting chromosome individualisation by directing replichores to separate cell halves. MukBEF also interacts with topoisomerase IV ParC2E2 heterotetramers, to direct its chromosomal distribution to mirror that of MukBEF, thereby facilitating coordination between chromosome organisation and decatenation by topoisomerase IV. Here we demonstrate that the MukB dimerization hinge binds ParC and MatP with the same dimer to dimer stoichiometry. MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding. Furthermore, the MukB hinge fails to stably associate with matS-bound MatP, while MatP mutants deficient in matS binding are impaired in MukB hinge binding, demonstrating that mats competes with the hinge for MatP binding. Cells expressing MukBEF complexes containing a mutation in the MukB hinge interface for ParC/MatP binding are deficient in ParC binding in vivo, despite having a Muk+ topoisomerase IV+ phenotype. This mutant protein is also impaired in MatP binding in vitro, and cells expressing this variant exhibit a MukBEF cellular localisation consistent with impaired MatP binding.

2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Emilien Nicolas ◽  
Amy L. Upton ◽  
Stephan Uphoff ◽  
Olivia Henry ◽  
Anjana Badrinarayanan ◽  
...  

ABSTRACTTheEscherichia colistructuralmaintenance ofchromosome (SMC) complex, MukBEF, and topoisomerase IV (TopoIV) interactin vitrothrough a direct contact between the MukB dimerization hinge and the C-terminal domain of ParC, the catalytic subunit of TopoIV. The interaction stimulates catalysis by TopoIVin vitro. Using live-cell quantitative imaging, we show that MukBEF directs TopoIV toori, with fluorescent fusions of ParC and ParE both forming cellular foci that colocalize with those formed by MukBEF throughout the cell cycle and in cells unable to initiate DNA replication. Removal of MukBEF leads to loss of fluorescent ParC/ParE foci. In the absence of functional TopoIV, MukBEF forms multiple foci that are distributed uniformly throughout the nucleoid, whereas multiple catenatedoris cluster at midcell. Once functional TopoIV is restored, the decatenatedoris segregate to positions that are largely coincident with the MukBEF foci, thereby providing support for a mechanism by which MukBEF acts in chromosome segregation by positioning newly replicated and decatenatedoris. Additional evidence for such a mechanism comes from the observation that in TopoIV-positive (TopoIV+) cells, newly replicatedoris segregate rapidly to the positions of MukBEF foci. Taken together, the data implicate MukBEF as a key component of the DNA segregation process by acting in concert with TopoIV to promote decatenation and positioning of newly replicatedoris.IMPORTANCEMechanistic understanding of how newly replicated bacterial chromosomes are segregated prior to cell division is incomplete. In this work, we providein vivoexperimental support for the view that topoisomerase IV (TopoIV), which decatenates newly replicated sister duplexes as a prelude to successful segregation, is directed to the replication origin region of theEscherichia colichromosome by the SMC (structuralmaintenance ofchromosome) complex, MukBEF. We providein vivodata that support the demonstrationin vitrothat the MukB interaction with TopoIV stimulates catalysis by TopoIV. Finally, we show that MukBEF directs the normal positioning of sister origins after their replication and during their segregation. Overall, the data support models in which the coordinate and sequential action of TopoIV and MukBEF plays an important role during bacterial chromosome segregation.


2003 ◽  
Vol 47 (3) ◽  
pp. 941-947 ◽  
Author(s):  
Christine D. Hardy ◽  
Nicholas R. Cozzarelli

ABSTRACT DNA gyrase and topoisomerase IV (topo IV) are the two essential type II topoisomerases of Escherichia coli. Gyrase is responsible for maintaining negative supercoiling of the bacterial chromosome, whereas topo IV's primary role is in disentangling daughter chromosomes following DNA replication. Coumarins, such as novobiocin, are wide-spectrum antimicrobial agents that primarily interfere with DNA gyrase. In this work we designed an alteration in the ParE subunit of topo IV at a site homologous to that which confers coumarin resistance in gyrase. This parE mutation renders the encoded topo IV approximately 40-fold resistant to inhibition by novobiocin in vitro and imparts a similar resistance to inhibition of topo IV-mediated relaxation of supercoiled DNA in vivo. We conclude that topo IV is a secondary target of novobiocin and that it is very likely to be inhibited by the same mechanism as DNA gyrase.


Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


Author(s):  
Ирина Владимировна Акулина ◽  
Светлана Ивановна Павлова ◽  
Ирина Семеновна Степаненко ◽  
Назира Сунагатовна Карамова ◽  
Александр Владиславович Сергеев ◽  
...  
Keyword(s):  

Проведено токсикологическое исследование соединений с антибактериальными свойствами из группы терпенов ментанового ряда в условиях in vitro и in vivo: лимонена (B34), его производного (+)-1,2-оксида лимонена (B60) и серосодержащего монотерпенового соединения 2-(1’-гидрокси-4’-изопренил-1’-метилциклогексил-2’-тио)метилэтаноата (B65). В условиях in vitro (культура опухолевых клеток HeLa) изучаемые монотерпены в диапазоне концентраций 2 – 200 мкг/мл обладали цитотоксичностью. Ингибирующая концентрация (ИК50) для B34 составила 231 (167 – 295) мкг/мл, для B60 – 181 (105 – 257) мкг/мл, ИК50 B65 – 229 (150 – 308) мкг/мл. Исследование генотоксичности показало, что B34 и B65 в диапазоне концентраций 50 – 1000 мкг/мл не индуцируют SOS мутагенез в клетках Escherichia coli PQ37, тогда как B60 в концентрациях 500 и 1000 мкг/мл проявляет генотоксичность. In vivo в остром эксперименте на беспородных мышах установлена низкая токсичность B34 и его производных при различных путях введения. Наименьший показатель острой токсичности имеет B65, в связи с чем дополнительно на крысах проведено изучение его хронической токсичности. Ежедневное внутрижелудочное введение B65 в разовых дозах, составляющих 1/10 и 1/20 ЛД50 (1000 мг/кг и 500 мг/кг), в течение 1 мес не вызывало гибели животных, значимых нарушений общего состояния, изменения динамики массы тела, морфопатологических изменений. Внутрижелудочное введение B65 крысам в высокой токсической дозе 2000 мг/кг (1/5 ЛД50) в течение месяца вызывает патоморфологические изменения структуры печени.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


2021 ◽  
Author(s):  
Jess Vergis ◽  
S V S Malik ◽  
Richa Pathak ◽  
Manesh Kumar ◽  
Nitin V Kurkure ◽  
...  

Abstract High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1–7)-Melittin (CAMA) against three multi- drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilisation. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Sign in / Sign up

Export Citation Format

Share Document