scholarly journals Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike

2021 ◽  
Author(s):  
Pei Tong ◽  
Avneesh Gautam ◽  
Ian Windsor ◽  
Meghan Travers ◽  
Yuezhou Chen ◽  
...  

ABSTRACTMemory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.

2017 ◽  
Vol 8 ◽  
Author(s):  
Jean-Philippe Bürckert ◽  
Axel R. S. X. Dubois ◽  
William J. Faison ◽  
Sophie Farinelle ◽  
Emilie Charpentier ◽  
...  

2006 ◽  
Vol 177 (4) ◽  
pp. 2242-2249 ◽  
Author(s):  
Yohei Kawano ◽  
Soichiro Yoshikawa ◽  
Yoshiyuki Minegishi ◽  
Hajime Karasuyama

2001 ◽  
Vol 194 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Antonio Ruiz-Vela ◽  
Fernando Serrano ◽  
Manuel A. González ◽  
José Luis Abad ◽  
Antonio Bernad ◽  
...  

Long-term cultured pre-B cells are able to differentiate into immunoglobulin (Ig)M-positive B cells (IgM+ cells) when transplanted into severe combined immunodeficient (SCID) mice. Based on previous studies, here we report the development of a reconstitution assay in nonobese diabetic/SCID (NOD/SCID) mice using pre-B cells, which allows us to study the role of calpains (calcium-activated endopeptidases) during B cell development as well as in B cell clonal deletion. Using this model, we show that calpastatin (the natural inhibitor of calpains) inhibits B cell receptor–induced apoptosis in IgM+ cells derived from transplanted mice. We thus hypothesize an important function for calpain in sculpting the B cell repertoire.


2021 ◽  
Author(s):  
Mathieu Claireaux ◽  
Tom G Caniels ◽  
Marlon de Gast ◽  
Julianna Han ◽  
Denise Guerra ◽  
...  

AbstractDelineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigated the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We found that ∼82% of SARS-CoV-2 S-reactive B cells show a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells shared an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. A proportion of memory B cells, comprising switched (∼0.05%) and unswitched B cells (∼0.04%), was also reactive with S and some of these cells were reactive with ADAMTS13, which is associated with thrombotic thrombocytopenia. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


2019 ◽  
Author(s):  
Eric Waltari ◽  
Aaron McGeever ◽  
Peter S. Kim ◽  
Krista M. McCutcheon

Phenotypic screening of antigen-specific antibodies in human blood is a common diagnostic test for infectious agents and a correlate of protection after vaccination. In addition to long-lived antibody secreting plasma cells residing in the bone marrow, memory B cells are a latent source of antigen-experienced, long-term immunity that can be found at low frequencies in circulating PBMCs. Assessing the genotype, clonal frequency, quality, and function of antibodies resulting from an individual’s persistent memory B cell repertoire can help inform the success or failure of immune protection. We have applied ELISPOT cell culture methods to functionally expand the memory repertoire from PBMCs and clonally map monoclonal antibodies from this population. We show that combining deep sequencing of stimulated memory B cell repertoires with retrieving single antigen-specific cells is a promising approach in evaluating the latent, functional B cell memory in PBMCs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4217-4217
Author(s):  
Kamil Bojarczuk ◽  
Magdalena Winiarska ◽  
Malgorzata Bobrowicz ◽  
Michal Dwojak ◽  
Nina Miazek ◽  
...  

Abstract Background Anti-CD20 monoclonal antibodies (mAbs) are widely used in the treatment of non-Hodgkin's lymphomas (NHL) and chronic lymphocytic leukemia (CLL). Combining new agents with already used anti-CD20 mAbs seems to be a reasonable approach to further improve current therapeutic options. It seems that signaling via the aberrantly activated B-cell receptor (BCR) plays a key role in the pathogenesis of certain types of B-cell tumors. Blocking BCR pro-survival pathway holds a great therapeutic potential in both NHL and CLL. Several trials are currently being conducted to investigate the effects of combination of BCR-targeting agents with anti-CD20 mAbs–based therapies. To improve these therapeutic approaches in a planned manner it will be utterly important to decipher actual mechanisms of interactions between BCR-targeted therapies and anti-CD20 mAbs in established in vitro models. Aims The aim of this study is to elucidate the role of BCR signaling pathways in the regulation of CD20 levels in B-cell-derived tumor cells and antitumor activity of anti-CD20 mAbs. Methods The project is undertaken fully in in vitro settings in the models of human lymphoma cells as well as primary cells from patients with B-cell tumors. Cells are pre-incubated for 48h with inhibitors of BCR signaling (SYK, BTK, PI3K, AKT, PLC-γ, PKC, mTOR, ERK 1/2) and subsequently tested using flow cytometry for their susceptibility to antitumor activity of anti-CD20 mAbs. Membrane level of CD20 antigen is assessed with FITC-conjugated anti-CD20 antibody staining, total level of CD20 protein is assessed in Western blotting. Transcription processes are analyzed with qPCR, ChIP and EMSA. Moreover, stably transduced lymphoma cells with silenced or constitutively active proteins of interest are employed. Results The results of our preliminary experiments show that blocking BCR network at many stages of the signaling cascade with specific chemical inhibitors or selective shRNA-mediated silencing of SYK or BTK results in considerable down-regulation of CD20 level as determined with flow cytometry. Moreover, a 48-hour incubation with BCR inhibitors leads to a substantial impairment of antitumor activity of anti-CD20 mAbs. Selected inhibitors of BCR signaling considerably decrease CD20 protein level in total cellular lysates as analyzed using Western blotting. In Raji cells incubated with selected BCR inhibitors quantitative real-time PCR shows a significant decrease in CD20 mRNA level. Noteworthy, washout experiments showed that surface CD20 reaches level of control after 96 h from the time that inhibitors were eliminated from the culture media. Studies performed on cell line expressing constitutively active AKT showed up-regulation of CD20 levels at both levels of protein and mRNA. Moreover, constitutively active AKT protects cells from BCR inhibitors-induced decrease of surface CD20. Summary/conclusions Blocking BCR complex network on nearly every step of signal initiation and propagation considerably down-regulates CD20 levels what might have extremely important consequences for the anti-cancer therapy that is based on the use of anti-CD20 mAbs. These studies should provide us with extensive knowledge on the biology of CD20 protein and pathways involved in CD20 regulation. In light of our recent experiments therapeutic combinations of BCR inhibitors and anti-CD20 mAbs-based modalities should be rationally and consciously introduced into clinic in optimized therapeutic schemes. We hypothesize that results of our experiments may lead to identification of the most beneficial therapeutic modalities and schedules that would improve the quality of life of patients suffering from B-cells originating tumors. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document