scholarly journals A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing

2021 ◽  
Author(s):  
Huitao Fan ◽  
Yiran Guo ◽  
Yi-Hsuan Tsai ◽  
Aaron J. Storey ◽  
Arum Kim ◽  
...  

ABSTRACTTrimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH “reader” module within BAHD1 in mammals.Key PointsBAHD1BAH is a functionally validated mammalian “reader” of H3K27me3, mediating BAHD1 targeting for gene silencing.BAHD1BAH connects H3K27me3 together with histone deacetylation, an integral step of gene silencing.BAHD1BAH-mediated functional readout of H3K27me3 is essential for organismal development.Graphic abstractA mammalian H3K27me3-transduction pathway operates through an H3K27me3-specific ‘reader’ module (BAH) of BAHD1, which assembles a complex with corepressors (HDACs and others) for suppressing histone acetylation and repressing expression at Polycomb target genes.

2007 ◽  
Vol 27 (24) ◽  
pp. 8824-8833 ◽  
Author(s):  
Brian S. Garrison ◽  
Stephen R. Yant ◽  
Jacob Giehm Mikkelsen ◽  
Mark A. Kay

ABSTRACT The Sleeping Beauty (SB) transposon represents an important vehicle for in vivo gene delivery because it can efficiently and stably integrate into mammalian genomes. In this report, we examined transposon expression in human cells using a novel nonselective fluorescence-activated cell sorter-based method and discovered that SB integrates ∼20 times more frequently than previously reported within systems that were dependent on transgene expression and likely subject to postintegrative gene silencing. Over time, phenotypic analysis of clonal integrants demonstrated that SB undergoes additional postintegrative gene silencing, which varied based on the promoter used for transgene expression. Molecular and biochemical studies suggested that transposon silencing was influenced by DNA methylation and histone deacetylation because both 5-aza-2′-deoxycytidine and trichostatin A partially rescued transgene silencing in clonal cell lines. Collectively, these data reveal the existence of a multicomponent postintegrative gene silencing network that efficiently targets invading transposon sequences for transcriptional silencing in mammalian cells.


2000 ◽  
Vol 20 (3) ◽  
pp. 842-850 ◽  
Author(s):  
Matthew C. Lorincz ◽  
Dirk Schübeler ◽  
Scott C. Goeke ◽  
Mark Walters ◽  
Mark Groudine ◽  
...  

ABSTRACT Methylation of cytosines in the CpG dinucleotide is generally associated with transcriptional repression in mammalian cells, and recent findings implicate histone deacetylation in methylation-mediated repression. Analyses of histone acetylation in in vitro-methylated transfected plasmids support this model; however, little is known about the relationships among de novo DNA methylation, transcriptional repression, and histone acetylation state. To examine these relationships in vivo, we have developed a novel approach that permits the isolation and expansion of cells harboring expressing or silent retroviruses. MEL cells were infected with a Moloney murine leukemia virus encoding the green fluorescent protein (GFP), and single-copy, silent proviral clones were treated weekly with the histone deacetylase inhibitor trichostatin A or the DNA methylation inhibitor 5-azacytidine. Expression was monitored concurrently by flow cytometry, allowing for repeated phenotypic analysis over time, and proviral methylation was determined by Southern blotting and bisulfite methylation mapping. Shortly after infection, proviral expression was inducible and the reporter gene and proviral enhancer showed a low density of methylation. Over time, the efficacy of drug induction diminished, coincident with the accumulation of methyl-CpGs across the provirus. Bisulfite analysis of cells in which 5-azacytidine treatment induced GFP expression revealed measurable but incomplete demethylation of the provirus. Repression could be overcome in late-passage clones only by pretreatment with 5-azacytidine followed by trichostatin A, suggesting that partial demethylation reestablishes the trichostatin-inducible state. These experiments reveal the presence of a silencing mechanism which acts on densely methylated DNA and appears to function independently of histone deacetylase activity.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sebastian Lunke ◽  
Scott Maxwell ◽  
Ishant Khurana ◽  
Harikrishnan K.N. ◽  
Jun Okabe ◽  
...  

Abstract Background Valproic acid (VPA) is one of the most commonly used anti-epileptic drugs with pharmacological actions on GABA and blocking voltage-gated ion channels. VPA also inhibits histone deacetylase (HDAC) activity. Suberoylanilide hydroxamic acid is also a member of a larger class of compounds that inhibit HDACs. At the time of this article, there are 123 active international clinical trials for VPA (also known as valproate, convulex, divalproex, and depakote) and SAHA (vorinostat, zolinza). While it is well known that VPA and SAHA influence the accumulation of acetylated lysine residues on histones, their true epigenetic complexity remains poorly understood. Results Primary human cells were exposed to VPA and SAHA to understand the extent of histone acetylation (H3K9/14ac) using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Because histone acetylation is often associated with modification of lysine methylation, we also examined H3K4me3 and H3K9me3. To assess the influence of the HDAC inhibitors on gene expression, we used RNA sequencing (RNA-seq). ChIP-seq reveals a distribution of histone modifications that is robust and more broadly regulated than previously anticipated by VPA and SAHA. Histone acetylation is a characteristic of the pharmacological inhibitors that influenced gene expression. Surprisingly, we observed histone deacetylation by VPA stimulation is a predominant signature following SAHA exposure and thus defines an acetylation/deacetylation (Ac/Dc) axis. ChIP-seq reveals regionalisation of histone acetylation by VPA and broader deacetylation by SAHA. Independent experiments confirm H3K9/14 deacetylation of NFκB target genes by SAHA. Conclusions The results provide an important framework for understanding the Ac/Dc axis by highlighting a broader complexity of histone modifications by the most established and efficacious anti-epileptic medication in this class, VPA and comparison with the broad spectrum HDAC inhibitor, SAHA.


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marianne B. Palczewski ◽  
Hannah Petraitis Kuschman ◽  
Rhea Bovee ◽  
Jason R. Hickok ◽  
Douglas D. Thomas

Abstract Triple-negative breast cancers (TNBC) that produce nitric oxide (NO) are more aggressive, and the expression of the inducible form of nitric oxide synthase (NOS2) is a negative prognostic indicator. In these studies, we set out to investigate potential therapeutic strategies to counter the tumor-permissive properties of NO. We found that exposure to NO increased proliferation of TNBC cells and that treatment with the histone deacetylase inhibitor Vorinostat (SAHA) prevented this proliferation. When histone acetylation was measured in response to NO and/or SAHA, NO significantly decreased acetylation on histone 3 lysine 9 (H3K9ac) and SAHA increased H3K9ac. If NO and SAHA were sequentially administered to cells (in either order), an increase in acetylation was observed in all cases. Mechanistic studies suggest that the “deacetylase” activity of NO does not involve S-nitrosothiols or soluble guanylyl cyclase activation. The observed decrease in histone acetylation by NO required the interaction of NO with cellular iron pools and may be an overriding effect of NO-mediated increases in histone methylation at the same lysine residues. Our data revealed a novel pathway interaction of Vorinostat and provides new insight in therapeutic strategy for aggressive TNBCs.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1088
Author(s):  
Katarzyna Lipska ◽  
Agata Filip ◽  
Anna Gumieniczek

Malignant cells in chronic lymphocytic leukemia (CLL) show resistance to apoptosis, as well as to chemotherapy, which are related to deletions or mutations of TP53, high expression of MCL1 and BCL2 genes and other abnormalities. Thus, the main goal of the present study was to assess the impact of chlorambucil (CLB) combined with valproic acid (VPA), a known antiepileptic drug and histone deacetylation inhibitor, on apoptosis of the cells isolated from 17 patients with CLL. After incubation with CLB (17.5 µM) and VPA (0.5 mM), percentage of apoptosis, as well as expression of two TP53 target genes (p21 and HDM2) and two genes from Bcl-2 family (BCL2 and MCL1), were tested. As a result, an increased percentage of apoptosis was observed for CLL cells treated with CLB and VPA, and with CLB alone. Under the treatment with the drug combination, the expression of p21 gene was visibly higher than under the treatment with CLB alone. At the same time, the cultures under CLB treatment showed visibly higher expression of BCL2 than the cultures with VPA alone. Thus, the present study strongly suggests further investigations on the CLB and VPA combination in CLL treatment.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kunxin Wu ◽  
Yadan Wu ◽  
Chunwei Zhang ◽  
Yan Fu ◽  
Zhixin Liu ◽  
...  

Abstract Background Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. Results In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. Conclusions The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.


2000 ◽  
Vol 275 (43) ◽  
pp. 33798-33805 ◽  
Author(s):  
Scott R. Eberhardy ◽  
Caroline A. D'Cunha ◽  
Peggy J. Farnham

Sign in / Sign up

Export Citation Format

Share Document