scholarly journals Functional development of a V3-specific broadly neutralizing antibody isolated from a case of HIV superinfection

2021 ◽  
Author(s):  
Mackenzie M. Shipley ◽  
Vidya Mangala Prasad ◽  
Laura E Doepker ◽  
Adam S Dingens ◽  
Duncan K Ralph ◽  
...  

Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. Mature bnAb QA013.2 bound both initial transmitted and superinfecting virus, but its inferred naïve bound only the superinfecting strain and was not neutralizing. QA013.2 requires residues spanning FWRH1-CDRH1 to attain breadth, which is uncommon for V3-specific bnAbs. A 4.15 Å cryo-EM structure of QA013.2 bound to heterologous native-like trimer showed recognition of V3 signatures (N301, N332, and GDIR). Antigenic profiling revealed that viral escape was achieved not only by changes in the structurally-defined epitope, but also by mutations in V1. These results highlight shared and distinct properties of QA013.2 relative to other V3-specific bnAbs in the setting of sequential, diverse antigenic variants.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mackenzie M Shipley ◽  
Vidya Mangala Prasad ◽  
Laura E Doepker ◽  
Adam S Dingens ◽  
Duncan K Ralph ◽  
...  

Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. BnAb QA013.2 bound initial and superinfecting viral Env, despite its probable naïve progenitor only recognizing the superinfecting strain, suggesting both viruses influenced this lineage. A 4.15 Å cryo-EM structure of QA013.2 bound to native-like trimer showed recognition of V3 signatures (N301/N332 and GDIR). QA013.2 relies less on CDRH3 and more on framework and CDRH1 for affinity and breadth compared to other V3/glycan-specific bnAbs. Antigenic profiling revealed that viral escape was achieved by changes in the structurally-defined epitope and by mutations in V1. These results highlight shared and novel properties of QA013.2 relative to other V3/glycan-specific bnAbs in the setting of sequential, diverse antigens.


2020 ◽  
Vol 38 (1) ◽  
pp. 673-703 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Kshitij Wagh ◽  
Bette Korber ◽  
Dan H. Barouch

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.


2021 ◽  
Author(s):  
Justin Y.A. Doritchamou ◽  
Jonathan P. Renn ◽  
Bethany Jenkins ◽  
Michal Fried ◽  
Patrick E. Duffy

Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum (Pf)-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is still unclear whether naturally acquired protective antibodies target variant or conserved epitopes. This is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA allele. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays neutralizing epitopes shared by multiple parasites, including maternal isolates, and suggest that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants.


2017 ◽  
Vol 91 (9) ◽  
Author(s):  
S. Abigail Smith ◽  
Cynthia A. Derdeyn

ABSTRACT HIV-1 infection from cell-to-cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al. (H. Li, C. Zony, P. Chen, and B. K. Chen, J. Virol. 91:e02425-16, 2017, https://doi.org/10.1128/JVI.02425-16 ) showed that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell-to-cell infection in a context-dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Colin Anthony ◽  
Talita York ◽  
Valerie Bekker ◽  
David Matten ◽  
Philippe Selhorst ◽  
...  

ABSTRACT V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the development of these antibodies can provide insights for immunogen design. We used a deep-sequencing approach, together with neutralization phenotyping, to investigate the rate and complexity of escape from V3-glycan-directed bNAbs compared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rapidly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach >50% frequency. In contrast, escape from the bNAbs was mediated via multiple pathways and took longer, with escape first occurring through an increase in V1 loop length, which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 reversion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contemporaneous neutralization observed up to 3 years postinfection. Both the ssNAb response and the bNAb response were modulated by the presence/absence of the N332 glycan, indicating an overlap between the two epitopes. Thus, selective pressure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape pathway. This slower and incomplete viral escape resulted in prolonged exposure of the bNAb epitope, which may in turn have aided the maturation of the bNAb lineage. IMPORTANCE The development of an HIV-1 vaccine is of paramount importance, and broadly neutralizing antibodies are likely to be a key component of a protective vaccine. The V3-glycan-targeting bNAb responses are among the most promising vaccine targets, as they are commonly elicited during infection. Understanding the interplay between viral evolution and the development of these antibodies provides insights that may guide immunogen design. Our work contrasted the dynamics of the early strain-specific antibodies and the later broadly neutralizing responses to a common Env target (V3C3), showing slower and more complex escape from bNAbs. Constrained bNAb escape, together with evidence of contemporaneous autologous virus neutralization, supports the proposal that prolonged exposure of the bNAb epitope enabled the maturation of the bNAb lineage.


2013 ◽  
Vol 210 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Andrew T. McGuire ◽  
Sam Hoot ◽  
Anita M. Dreyer ◽  
Adriana Lippy ◽  
Andrew Stuart ◽  
...  

Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti–CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.


2012 ◽  
Vol 87 (3) ◽  
pp. 1899-1905 ◽  
Author(s):  
Lihong Liu ◽  
Weiming Wang ◽  
Lifei Yang ◽  
Huanhuan Ren ◽  
Jason T. Kimata ◽  
...  

ABSTRACTPG9 and PG16 are two quaternary-structure-specific broadly neutralizing antibodies with unique HCDR3 subdomains. Previously, we showed that glycosylphosphatidylinositol (GPI)-anchored HCDR3 subdomains (GPI-HCDR3) can be targeted to lipid rafts of the plasma membrane, bind to the epitope recognized by HCDR3 of PG16, and neutralize diverse HIV-1 isolates. In this study, we further developed trimeric GPI-HCDR3s and demonstrated that trimeric GPI-HCDR3 (PG16) dramatically improves anti-HIV-1 neutralization, suggesting that a stoichiometry of recognition of 3 or 2 HCDR3 molecules (PG16) to 1 viral spike is possible.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
D Kitchin ◽  
J Bhiman ◽  
D Mvududu ◽  
B Oosthuysen ◽  
B Lambson ◽  
...  

Abstract Broadly neutralizing antibodies (bNAbs) are essential for a preventative HIV-1 vaccine but have not been elicited through vaccination. bNAbs develop in 20–30 per cent of HIV-1 infections and often target the V3-glycan epitope of the HIV envelope protein (Env). In these individuals, virus-antibody co-evolution is thought to drive the maturation of antibody lineages to neutralization breadth. We used deep sequencing of env genes and antibody transcripts from fourteen time points spanning the first 3 years of infection to characterize the virus-antibody co-evolution in donor CAP255 who developed V3-glycan-specific bNAbs. Sequencing and cloning of env genes, followed by neutralization assays, were used to identify Env mutations associated with neutralization escape from two bNAbs (CAP255.G3 and CAP255.C5) isolated at 149 weeks post-infection (wpi). Sequencing data indicated that CAP255 was co-infected by three related viral variants, all of which had an intact N332 glycan, which persisted in > 90 per cent of later viruses. A recombinant V3-region became fixed from 8 wpi, conferring slight neutralization resistance to CAP255.G3/C5 and other V3-glycan bNAbs. Later, T415R/K substitutions in V4 emerged by 51 wpi and were associated with complete viral escape from CAP255.G3/C5, though not from the polyclonal plasma response. All 93-week and later Envs were resistant to CAP255.G3/C5 and V3-glycan bNAb PGT135. Viral escape by 51 wpi suggested that the CAP255 bNAbs arose earlier, driving escape, but persisted to 149 weeks. This was supported by preliminary deep sequencing of the antibody repertoire that indicated bNAb lineage members were already present in the plasma at 39 wpi. Escape from V3-glycan bNAbs via T415R/K mutations have not previously been shown, suggesting a novel mode of recognition within the V3-glycan supersite. Further work will focus on identifying the bNAb-initiating Env and intermediate bNAb lineage members that were capable of engaging contemporaneous Env neutralization escape mutants. Characterization of Envs that engaged bNAb precursors, as well as those that selected for broader members of the bNAb lineage, will inform the design of immunogens capable of eliciting V3-glycan bNAbs in a novel HIV-1 vaccine regimen.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450023 ◽  
Author(s):  
Jing Ren ◽  
John Ellis ◽  
Jinyan Li

A conserved epitope is an epitope retained by multiple strains of influenza as the key target of a broadly neutralizing antibody. Identification of conserved epitopes is of strong interest to help design broad-spectrum vaccines against influenza. Conservation score measures the evolutionary conservation of an amino acid position in a protein based on the phylogenetic relationships observed amongst homologous sequences. Here, Average Amino Acid Conservation Score (AAACS) is proposed as a method to identify HA's conserved epitopes. Our analysis shows that there is a clear distinction between conserved epitopes and nonconserved epitopes in terms of AAACS. This method also provides an excellent classification performance on an independent dataset. In contrast, alignment-based comparison methods do not work well for this problem, because conserved epitopes to the same broadly neutralizing antibody are usually not identical or similar. Location-based methods are not successful either, because conserved epitopes are located at both the less-conserved globular head (HA1) and the more-conserved stem (HA2). As a case study, two conserved epitopes on HA are predicted for the influenza A virus H7N9: One should match the broadly neutralizing antibodies CR9114 or FI6v3, while the other is new and requires validation by wet-lab experiments.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Abimbola O. Kolawole ◽  
Hong Q. Smith ◽  
Sophia A. Svoboda ◽  
Madeline S. Lewis ◽  
Michael B. Sherman ◽  
...  

ABSTRACT The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region—one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from—is therefore ideal for vaccine development. Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies. IMPORTANCE The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region—one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from—is therefore ideal for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document