scholarly journals Non-severe SARS-CoV-2 infection is characterised by very early T cell proliferation independent of type 1 interferon responses and distinct from other acute respiratory viruses.

Author(s):  
Aneesh Chandran ◽  
Joshua Rosenheim ◽  
Gayathrie Nageswaran ◽  
Leo Swaddling ◽  
Gabriele Pollara ◽  
...  

The correlates of natural protective immunity to SARS-CoV-2 in the majority who experience asymptomatic infection or non-severe disease are not fully characterised, and remain important as new variants emerge. We addressed this question using blood transcriptomics, multiparameter flow cytometry and T cell receptor (TCR) sequencing spanning the time of incident infection. We identified a type 1 interferon (IFN) response common to other acute respiratory viruses, and a cell proliferation response that discriminated SARS-CoV-2 from other viruses. These responses peaked by the time the virus was first detected, and in some preceded virus detection. Cell proliferation was most evident in CD8 T cells and associated with rapid expansion of SARS-CoV-2 reactive TCRs. We found an equally rapid increase in immunoglobulin transcripts, but circulating virus-specific antibodies lagged by 1-2 weeks. Our data support a protective role for rapid induction of type 1 IFN and CD8 T cell responses to SARS-CoV-2.

2021 ◽  
Vol 22 (11) ◽  
pp. 5816
Author(s):  
Suresh Velnati ◽  
Sara Centonze ◽  
Federico Girivetto ◽  
Gianluca Baldanzi

Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.


1987 ◽  
Vol 7 (12) ◽  
pp. 4472-4481
Author(s):  
C H June ◽  
J A Ledbetter ◽  
M M Gillespie ◽  
T Lindsten ◽  
C B Thompson

CD28 is a homodimeric glycoprotein expressed on the surface of a major subset of human T cells that has recently been identified as a member of the immunoglobulin supergene family. The binding of monoclonal antibodies to the CD28 antigen on purified T cells does not result in proliferation; however, previous studies have shown that the combination of CD28 stimulation and protein kinase C activation by phorbol myristate acetate (PMA) results in T-cell proliferation that is independent of both accessory cells and activation of the T-cell receptor-CD3 complex. In the present study, effects of stimulation by anti-CD28 on cell cycle progression and on the interleukin 2 (IL-2) and IL-2 receptor system have been investigated on primary cultures of purified peripheral-blood CD28+ T cells. There was no measurable effect on cell size or on DNA synthesis after stimulation of resting (G0) cells by CD28 alone. After 3 h of activation of T cells by PMA alone, a slight (8%) increase in cell volume occurred that did not progress to DNA synthesis. In contrast, T-cell stimulation by CD28 in combination with PMA resulted in a progressive increase in cell volume in approximately 100% of cells at 12 to 14 h after stimulation. Northern blot (RNA blot) analysis revealed that CD28 stimulation alone failed to cause expression of the alpha chain of the IL-2 receptor or of IL-2 mRNA, and in accord with previous studies, stimulation by PMA alone resulted in the accumulation of IL-2 receptor transcripts but no detectable IL-2 mRNA. In contrast, T-cell stimulation by the combination of CD28 and PMA resulted in the appearance of IL-2 transcripts and enhanced expression of IL-2 receptor mRNA. Functional studies revealed that the proliferation induced by CD28 and PMA stimulation was entirely resistant to cyclosporine, in contrast to T-cell activation induced by the CD3-T-cell receptor complex. Cyclosporine was found not to affect the accumulation of IL-2 mRNA after CD28 plus PMA stimulation, although there was no detectable IL-2 mRNA after stimulation by CD3 in the presence of the drug. Furthermore, stimulation by CD28 in combination with immobilized CD3 antibodies caused a striking enhancement of IL-2 mRNA expression that was, in part, resistant to the effects of cyclosporine. These studies indicate that the CD28 molecule synergizes with protein kinase C activation to induce IL-2 gene expression and demonstrate that stimulation by the CD28 pathway can cause vigorous T-cell proliferation even in the presence of cyclosporine and that cyclosporine does not prevent transcription of 16-2 mRNA, as has been suggested previously. Moreover, these findings suggest that a potential role for the CD28 molecule in vivo may be to augment IL-2 production after stimulation of the CD3-T-cell receptor molecular complex and thereby to amplify an antigen-specific immune response. Finally, these results provide further evidence that the CD28 molecule triggers T-cell proliferation in a manner that differs biochemically from CD3-T-cell receptor-induced proliferation.


2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


1999 ◽  
pp. 272-278 ◽  
Author(s):  
F Dotta ◽  
S Dionisi ◽  
V Viglietta ◽  
C Tiberti ◽  
MC Matteoli ◽  
...  

The target molecules of the T-cell response in type 1 diabetes, despite their pathogenic importance, remain largely uncharacterized, especially in humans. Interestingly, molecules such as insulin and glutamic acid decarboxylase (GAD) have been shown to be a target not only of autoantibodies, but also of autoreactive T-lymphocytes both in man and in the non-obese diabetic (NOD) mouse. In the present study we aimed to determine the existence of a specific T-cell response towards the insulinoma-associated protein 2 (IA-2) islet tyrosine phosphatase, a recently identified autoantigen which is the target of autoantibodies strongly associated with diabetes development. Human recombinant IA-2 produced in Escherichia coli, was tested for its reactivity with peripheral blood lymphocytes obtained from 16 newly diagnosed type 1 diabetic patients and from 25 normal controls, 15 of whom were HLA-DR-matched. A T-cell proliferation assay was performed in triplicate employing freshly isolated cells in the absence or in the presence of the antigen to be tested (at two different concentrations: 2 microg/ml and 10 microg/ml). A specific T-cell proliferation (defined as a stimulation index (S.I.) >/=3) was observed against IA-2 used at a concentration of 10 microg/ml (but not of 2 microg/ml) in 8/16 diabetic patients, in 1/15 HLA-DR-matched control subjects (P<0.01 by Fisher exact test) and in 0/10 of the remaining normal individuals. A statistically significant difference (P<0.003 by Mann-Whitney U test) was also observed in S.I. values between patients (3.1+/-1.4) and HLA-DR-matched controls (1.7+/-0.54) employing IA-2 at a concentration of 10 microg/ml. However, when IA-2 was used at a concentration of 2 microg/ml, the difference in S. I. between patients (1.65+/-0.8) and controls (1.0+/-0.3) did not reach statistical significance. In conclusion, these data show the presence of a specific, dose-dependent T-lymphocyte response against the IA-2 islet tyrosine phosphatase at the onset of type 1 diabetes. Consequently, this molecule appears to be a target not only at the B-lymphocyte but also at the T-lymphocyte level, reinforcing the potential pathogenic role of this autoantigen in the islet destructive process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laurie G. Landry ◽  
Amanda M. Anderson ◽  
Holger A. Russ ◽  
Liping Yu ◽  
Sally C. Kent ◽  
...  

Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells. We identified 14 TCR clonotypes from four out of the six donors that responded to preproinsulin peptides. Epitopes were found across all of proinsulin (insulin B-chain, C-peptide, and A-chain) including four hot spot regions containing peptides commonly targeted by TCR clonotypes derived from multiple T1D donors. Of importance, these hot spots overlap with peptide regions to which CD4 T cell responses have previously been detected in the peripheral blood of T1D patients. The 14 TCR clonotypes recognized proinsulin peptides presented by various HLA class II molecules, but there was a trend for dominant restriction with HLA-DQ, especially T1D risk alleles DQ8, DQ2, and DQ8-trans. The characteristics of the tri-molecular complex including proinsulin peptide, HLA-DQ molecule, and TCR derived from CD4 T cells in islets, provides an essential basis for developing antigen-specific biomarkers as well as immunotherapies.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 108-OR
Author(s):  
ERIN E. BASCHAL ◽  
ANGELA M. MITCHELL ◽  
KRISTEN MCDANIEL ◽  
AIMON ALKANANI ◽  
TAYLOR ARMSTRONG ◽  
...  

2012 ◽  
Vol 209 (2) ◽  
pp. 335-352 ◽  
Author(s):  
David A. Schubert ◽  
Susana Gordo ◽  
Joseph J. Sabatino ◽  
Santosh Vardhana ◽  
Etienne Gagnon ◽  
...  

Recognition of self–peptide-MHC (pMHC) complexes by CD4 T cells plays an important role in the pathogenesis of many autoimmune diseases. We analyzed formation of immunological synapses (IS) in self-reactive T cell clones from patients with multiple sclerosis and type 1 diabetes. All self-reactive T cells contained a large number of phosphorylated T cell receptor (TCR) microclusters, indicative of active TCR signaling. However, they showed little or no visible pMHC accumulation or transport of TCR–pMHC complexes into a central supramolecular activation cluster (cSMAC). In contrast, influenza-specific T cells accumulated large quantities of pMHC complexes in microclusters and a cSMAC, even when presented with 100-fold lower pMHC densities. The self-reactive T cells also maintained a high degree of motility, again in sharp contrast to virus-specific T cells. 2D affinity measurements of three of these self-reactive T cell clones demonstrated a normal off-rate but a slow on-rate of TCR binding to pMHC. These unusual IS features may facilitate escape from negative selection by self-reactive T cells encountering very small amounts of self-antigen in the thymus. However, these same features may enable acquisition of effector functions by self-reactive T cells encountering large amounts of self-antigen in the target organ of the autoimmune disease.


2019 ◽  
Vol 132 (15) ◽  
pp. 1796-1801 ◽  
Author(s):  
Hui Ouyang ◽  
Fang Han ◽  
Ze-Chen Zhou ◽  
Qi-Wen Zheng ◽  
Yang-Yang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document