scholarly journals The Host Cell’s Endoplasmic Reticulum Proteostasis Network Profoundly Shapes the Protein Sequence Space Accessible to HIV Envelope

2021 ◽  
Author(s):  
Jimin Yoon ◽  
Emmanuel E. Nekongo ◽  
Jessica E. Patrick ◽  
Angela M. Phillips ◽  
Anna I. Ponomarenko ◽  
...  

AbstractThe sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, however, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody and drug escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s activation. This phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is activated, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean-François Bruxelle ◽  
Tess Kirilenko ◽  
Nino Trattnig ◽  
Yiqiu Yang ◽  
Matteo Cattin ◽  
...  

AbstractThe occurrence of oligomannose-specific broadly neutralizing antibodies (bnAbs) has spurred efforts to develop immunogens that can elicit similar antibodies. Here, we report on the antigenicity and immunogenicity of a CRM197-conjugate of a previously reported oligomannose mimetic. Oligomannose-specific bnAbs that are less dependent on interactions with the HIV envelope protein sequence showed strong binding to the glycoconjugates, with affinities approximating those reported for their cognate epitope. The glycoconjugate is also recognized by inferred germline precursors of oligomannose-specific bnAbs, albeit with the expected low avidity, supporting its potential as an immunogen. Immunization of human-antibody transgenic mice revealed that only a TLR4-stimulating adjuvant formulation resulted in antibodies able to bind a panel of recombinant HIV trimers. These antibodies bound at relatively modest levels, possibly explaining their inability to neutralize HIV infectivity. Nevertheless, these findings contribute further to understanding conditions for eliciting HIV-cross-reactive oligomannose-specific antibodies and inform on next steps for improving on the elicited response.


2016 ◽  
Vol 213 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Natalia Sikorska ◽  
Leticia Lemus ◽  
Auxiliadora Aguilera-Romero ◽  
Javier Manzano-Lopez ◽  
Howard Riezman ◽  
...  

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


2019 ◽  
Author(s):  
Derek M Mason ◽  
Simon Friedensohn ◽  
Cédric R Weber ◽  
Christian Jordi ◽  
Bastian Wagner ◽  
...  

ABSTRACTTherapeutic antibody optimization is time and resource intensive, largely because it requires low-throughput screening (103 variants) of full-length IgG in mammalian cells, typically resulting in only a few optimized leads. Here, we use deep learning to interrogate and predict antigen-specificity from a massively diverse sequence space to identify globally optimized antibody variants. Using a mammalian display platform and the therapeutic antibody trastuzumab, rationally designed site-directed mutagenesis libraries are introduced by CRISPR/Cas9-mediated homology-directed repair (HDR). Screening and deep sequencing of relatively small libraries (104) produced high quality data capable of training deep neural networks that accurately predict antigen-binding based on antibody sequence. Deep learning is then used to predict millions of antigen binders from an in silico library of ~108 variants, where experimental testing of 30 randomly selected variants showed all 30 retained antigen specificity. The full set of in silico predicted binders is then subjected to multiple developability filters, resulting in thousands of highly-optimized lead candidates. With its scalability and capacity to interrogate high-dimensional protein sequence space, deep learning offers great potential for antibody engineering and optimization.


PLoS ONE ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. e96 ◽  
Author(s):  
Yuuki Hayashi ◽  
Takuyo Aita ◽  
Hitoshi Toyota ◽  
Yuzuru Husimi ◽  
Itaru Urabe ◽  
...  

Science ◽  
2015 ◽  
Vol 347 (6222) ◽  
pp. 673-677 ◽  
Author(s):  
Anna I. Podgornaia ◽  
Michael T. Laub

Mapping protein sequence space is a difficult problem that necessitates the analysis of 20N combinations for sequences of length N. We systematically mapped the sequence space of four key residues in the Escherichia coli protein kinase PhoQ that drive recognition of its substrate PhoP. We generated a library containing all 160,000 variants of PhoQ at these positions and used a two-step selection coupled to next-generation sequencing to identify 1659 functional variants. Our results reveal extensive degeneracy in the PhoQ-PhoP interface and epistasis, with the effect of individual substitutions often highly dependent on context. Together, epistasis and the genetic code create a pattern of connectivity of functional variants in sequence space that likely constrains PhoQ evolution. Consequently, the diversity of PhoQ orthologs is substantially lower than that of functional PhoQ variants.


1995 ◽  
Vol 79 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Savitr Trakulnaleamsai ◽  
Tetsuya Yomo ◽  
Masako Yoshikawa ◽  
Satoshi Aihara ◽  
Itaru Urabe

Sign in / Sign up

Export Citation Format

Share Document