scholarly journals A potently neutralizing anti-SARS-CoV-2 antibody inhibits variants of concern by binding a highly conserved epitope

2021 ◽  
Author(s):  
Laura A. VanBlargan ◽  
Lucas J. Adams ◽  
Zhuoming Liu ◽  
Rita E. Chen ◽  
Pavlo Gilchuk ◽  
...  

SUMMARYWith the emergence of SARS-CoV-2 variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here we developed a panel of neutralizing anti-SARS-CoV-2 mAbs that bind the receptor binding domain of the spike protein at distinct epitopes and block virus attachment to cells and its receptor, human angiotensin converting enzyme-2 (hACE2). While several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by historical SARS-CoV-2 strains, others induced escape variantsin vivoand lost activity against emerging strains. We identified one mAb, SARS2-38, that potently neutralizes all SARS-CoV-2 variants of concern tested and protects mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engages a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of inhibitory antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.

2021 ◽  
Author(s):  
Vince St. Dollente Mesias ◽  
Hongni Zhu ◽  
Xiao Tang ◽  
Xin Dai ◽  
Yusong Guo ◽  
...  

The infection of coronavirus initiates with the binding between its spike protein receptor binding domain (RBD) and a human cellular receptor called angiotensin-converting enzyme 2 (ACE2). Here, we construct truncated...


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2020 ◽  
Author(s):  
Edward P. Gniffke ◽  
Whitney E. Harrington ◽  
Nicholas Dambrauskas ◽  
Yonghou Jiang ◽  
Olesya Trakhimets ◽  
...  

AbstractHigh throughput serological tests that can establish the presence and functional activity of anti-SARS-COV2 antibodies are urgently needed. Here we present microsphere-based Flow Cytometry assays that quantify both anti-spike IgGs in plasma, and the ability of plasma to inhibit the binding of spike protein to angiotensin converting enzyme 2 (ACE2). First, we detected anti-spike-trimer IgGs in 22/24 and anti-spike-receptor-binding-domain (RBD) IgGs in 21/24 COVID+ subjects at a median of 36 (range 14-73) days following documented SARS-CoV-2 RNA (+) secretions. Next, we find that plasma from all 22/24 subjects with anti-trimer IgGs inhibited ACE2-trimer binding to a greater degree than controls, and that the degree of inhibition correlated with anti-trimer IgG levels. Depletion of trimer-reactive Igs from plasma reduced ACE2-trimer inhibitory capacity to a greater degree than depletion of RBD-reactive Igs, suggesting that inhibitory antibodies act by binding both within and outside of the RBD. Amongst the 24 subjects, presence of fever was associated with higher levels of anti-trimer IgG and inhibition of binding to human ACE2. This inhibition assay may be broadly useful to quantify the functional antibody response of recovered COVID19 patients or vaccine recipients in a cell-free assay system.


2021 ◽  
Vol 14 (10) ◽  
pp. 954
Author(s):  
Paolo Coghi ◽  
Li Jun Yang ◽  
Jerome P. L. Ng ◽  
Richard K. Haynes ◽  
Maurizio Memo ◽  
...  

Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.


2020 ◽  
Author(s):  
Ankush Garg ◽  
Gaurav Kumar ◽  
Sharmistha Sinha

AbstractnCOVID-19 virus makes cellular entry using its spike protein protruding out on its surface. Angiotensin converting enzyme 2 receptor has been identified as a receptor that mediates the viral entry by binding with the receptor binding motif of spike protein. In the present study, we elucidate the significance of N-terminal domain of spike protein in spike-receptor interactions. Recent clinical reports indicate a link between nCOVID-19 infections with patient comorbidities. The underlying reason behind this relationship is not clear. Using molecular docking, we study the affinity of the nCOVID-19 spike protein with cell receptors overexpressed under disease conditions. Our results suggest that certain cell receptors such as DC/L-SIGN, DPP4, IL22R and ephrin receptors could act as potential receptors for the spike protein. The receptor binding domain of nCOVID-19 is more flexible than that of SARS-COV and has a high propensity to undergo phase separation. Higher flexibility of nCOVID-19 receptor binding domain might enable it to bind multiple receptor partners. Further experimental work on the association of these receptors with spike protein may help us to explain the severity of nCOVID-19 infection in patients with comorbidities.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Christopher J. Day ◽  
Benjamin Bailly ◽  
Patrice Guillon ◽  
Larissa Dirr ◽  
Freda E.-C. Jen ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 μM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency—Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


Author(s):  
Juan J de Pablo ◽  
Walter Alvarado ◽  
Fabian Bylehn ◽  
Cintia Menendez ◽  
Gustavo Perez

The interactions between the receptor binding domain (RBD) of SARS-CoV-2 and the angiotensin- converting enzyme 2 (ACE2) are crucial for viral entry and subsequent replication. Given the large and featureless...


Author(s):  
Monique Vogel ◽  
Xinyue Chang ◽  
Gilles Sousa Augusto ◽  
Mona O. Mohsen ◽  
Daniel E. Speiser ◽  
...  

AbstractBackgroundSeveral new variants of SARS-CoV-2 have emerged since fall 2020 which have multiple mutations in the receptor binding domain (RBD) of the spike protein.ObjectiveWe aimed to assess how mutations in the SARS-CoV-2 RBD affect receptor affinity to angiotensin-converting enzyme 2 (ACE2) and neutralization by anti-RBD serum antibodies.MethodsWe produced a SARS-CoV-2 RBD mutant (RBDmut) with key mutations (E484K, K417N, N501Y) from the newly emerged Brazilian variant. Using Biolayer Interferometry, we analyzed the binding of this mutant to ACE2, and the susceptibility to neutralization by sera from vaccinated mice and COVID-19 convalescent patients.ResultsKinetic profiles showed increased RBDmut - ACE2 affinity compared to RBDwt, and binding of vaccine-elicited or convalescent sera was significantly reduced. Likewise, both sera types showed significantly reduced ability to block RBDmut - ACE2 binding indicating that antibodies induced by RBDwt have reduced capability to neutralize mutant virus.ConclusionOur physiochemical data show enhanced infectivity and reduced neutralization by polyclonal antibodies of the Brazilian variant of SARS-CoV-2.Capsule summarySARS-CoV-2 variant with Brazilian RBD mutations shows increased ACE2 affinity and reduced susceptibility to blockage by vaccine-elicited and convalescent sera.


Sign in / Sign up

Export Citation Format

Share Document