scholarly journals Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin

2021 ◽  
Author(s):  
Qian Yu ◽  
Liang-Chun Wang ◽  
Daniel C. Stein ◽  
Wenxia Song

AbstractNeisseria gonorrhoeae (GC) establishes symptomatic infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli ablation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shed from the cervix, but neither in the ectocervix nor the endocervix, by immunofluorescence microscopy. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Thus, polarized expression of ezrin at the apical surface of epithelial cells inhibits GC invasion, while non-polarized expression of ezrin promotes GC invasion by driving actin accumulation and microvilli elongation.

2021 ◽  
Vol 17 (12) ◽  
pp. e1009592
Author(s):  
Qian Yu ◽  
Liang-Chun Wang ◽  
Sofia Di Benigno ◽  
Daniel C. Stein ◽  
Wenxia Song

Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.


2021 ◽  
Author(s):  
Hanqing Guo ◽  
Michael Swan ◽  
Shicheng Huang ◽  
Bing He

Apical constriction driven by non-muscle myosin II (″myosin″) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of myosin, we find that during Drosophila mesoderm invagination, myosin contractility is critical to prevent tissue relaxation during the early, ″priming″ stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration, suggesting that the mesoderm is mechanically bistable during gastrulation. Combining computer modeling and experimental measurements, we show that the observed mechanical bistability arises from an in-plane compression from the surrounding ectoderm, which promotes mesoderm invagination by facilitating a buckling transition. Our results indicate that Drosophila mesoderm invagination requires a joint action of local apical constriction and global in-plane compression to trigger epithelial buckling.


2015 ◽  
Vol 89 (23) ◽  
pp. 12026-12034 ◽  
Author(s):  
Hiroshi Katoh ◽  
Yuichiro Nakatsu ◽  
Toru Kubota ◽  
Masafumi Sakata ◽  
Makoto Takeda ◽  
...  

ABSTRACTMumps virus (MuV) is an airborne virus that causes a systemic infection in patients.In vivo, the epithelium is a major replication site of MuV, and thus, the mode of MuV infection of epithelial cells is a subject of interest. Our data in the present study showed that MuV entered polarized epithelial cells via both the apical and basolateral surfaces, while progeny viruses were predominantly released from the apical surface. In polarized cells, intracellular transport of viral ribonucleoprotein (vRNP) complexes was dependent on Rab11-positive endosomes, and vRNP complexes were transported to the apical membrane. Expression of a dominant negative form of Rab11 (Rab11S25N) reduced the progeny virus release in polarized cells but not in nonpolarized cells. Although in this way these effects were correlated with cell polarity, Rab11S25N did not modulate the direction of virus release from the apical surface. Therefore, our data suggested that Rab11 is not a regulator of selective apical release of MuV, although it acts as an activator of virus release from polarized epithelial cells. In addition, our data and previous studies on Sendai virus, respiratory syncytial virus, and measles virus suggested that selective apical release from epithelial cells is used by many paramyxoviruses, even though they cause either a systemic infection or a local respiratory infection.IMPORTANCEMumps virus (MuV) is the etiological agent of mumps and causes a systemic infection. However, the precise mechanism by which MuV breaks through the epithelial barriers and achieves a systemic infection remains unclear. In the present study, we show that the entry of MuV is bipolar, while the release is predominantly from the apical surface in polarized epithelial cells. In addition, the release of progeny virus was facilitated by a Rab11-positive recycling endosome and microtubule network. Our data provide important insights into the mechanism of transmission and pathogenesis of MuV.


2014 ◽  
Vol 207 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Robert S. Fischer

Polarized epithelial cells create tightly packed arrays of microvilli in their apical membrane, but the fate of these microvilli is relatively unknown when epithelial cell polarity is lost during wound healing. In this issue, Klingner et al. (2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201402037) show that, when epithelial cells become subconfluent, actomyosin contractions locally within the apical cortex cause their microvilli to become motile over the dorsal/apical surface. Their unexpected observations may have implications for epithelial responses in wound healing and disease.


2015 ◽  
Vol 211 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Emily H. Stoops ◽  
Michael Hull ◽  
Christina Olesen ◽  
Kavita Mistry ◽  
Jennifer L. Harder ◽  
...  

In polarized epithelial cells, newly synthesized cell surface proteins travel in carrier vesicles from the trans Golgi network to the apical or basolateral plasma membrane. Despite extensive research on polarized trafficking, the sites of protein delivery are not fully characterized. Here we use the SNAP tag system to examine the site of delivery of the apical glycoprotein gp135. We show that a cohort of gp135 is delivered to a ring surrounding the base of the primary cilium, followed by microtubule-dependent radial movement away from the cilium. Delivery to the periciliary ring was specific to newly synthesized and not recycling protein. A subset of this newly delivered protein traverses the basolateral membrane en route to the apical membrane. Crumbs3a, another apical protein, was not delivered to the periciliary region, instead making its initial apical appearance in a pattern that resembled its steady-state distribution. Our results demonstrate a surprising “hot spot” for gp135 protein delivery at the base of the primary cilium and suggest the existence of a novel microtubule-based directed movement of a subset of apical surface proteins.


2016 ◽  
Vol 214 (3) ◽  
pp. 259-273 ◽  
Author(s):  
Miguel Bernabé-Rubio ◽  
Germán Andrés ◽  
Javier Casares-Arias ◽  
Jaime Fernández-Barrera ◽  
Laura Rangel ◽  
...  

The primary cilium is a membrane protrusion that is crucial for vertebrate tissue homeostasis and development. Here, we investigated the uncharacterized process of primary ciliogenesis in polarized epithelial cells. We show that after cytokinesis, the midbody is inherited by one of the daughter cells as a remnant that initially locates peripherally at the apical surface of one of the daughter cells. The remnant then moves along the apical surface and, once proximal to the centrosome at the center of the apical surface, enables cilium formation. The physical removal of the remnant greatly impairs ciliogenesis. We developed a probabilistic cell population–based model that reproduces the experimental data. In addition, our model explains, solely in terms of cell area constraints, the various observed transitions of the midbody, the beginning of ciliogenesis, and the accumulation of ciliated cells. Our findings reveal a biological mechanism that links the three microtubule-based organelles—the midbody, the centrosome, and the cilium—in the same cellular process.


2005 ◽  
Vol 45 (supplement) ◽  
pp. S83
Author(s):  
T. Watanabe ◽  
H. Hosoya ◽  
S. Yonemura

2009 ◽  
Vol 184 (5) ◽  
pp. 721-736 ◽  
Author(s):  
Ruth Rollason ◽  
Viktor Korolchuk ◽  
Clare Hamilton ◽  
Mark Jepson ◽  
George Banting

CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells.


1988 ◽  
Vol 8 (8) ◽  
pp. 3391-3396 ◽  
Author(s):  
E T Clayson ◽  
R W Compans

The uptake of simian virus 40 (SV40) by polarized epithelial cells was investigated by growth of cells on permeable supports and inoculation on either the apical or the basolateral surface. Binding of radiolabeled SV40 occurred on the apical but not the basolateral surfaces of permissive polarized Vero C1008 cells and nonpermissive polarized MDCK cells. When similar experiments were performed on nonpolarized Vero or CV-1 cells, virus binding occurred regardless of the direction of virus input. Electron micrographs of Vero C1008 cells infected at high multiplicities revealed virions lining the surfaces of apically infected cells, while the surfaces of basolaterally infected cells were devoid of virus particles. Analysis of the binding data revealed a single class of virus receptors (9 x 10(4) per cell) with a high affinity for SV40 (Kd = 3.76 pM) on the apical surfaces of Vero C 1008 cells. Indirect immunofluorescence studies revealed that synthesis of viral capsid proteins in Vero C1008 cells occurred only when input virions had access to the apical surface. Virus yields from apically infected Vero C1008 cells were 10(5) PFU per cell, while yields obtained from basolaterally infected cells were less than one PFU per cell. These results indicate that a specific receptor for SV40 is expressed exclusively on the apical surfaces of polarized Vero C1008 cells.


Sign in / Sign up

Export Citation Format

Share Document