scholarly journals Vitamin C inhibits SARS coronavirus-2 main protease essential for viral replication

2021 ◽  
Author(s):  
Tek Narsingh Malla ◽  
Suraj Pandey ◽  
Ishwor Poudyal ◽  
Luis Aldama ◽  
Dennis Feliz ◽  
...  

There is an urgent need for anti-viral agents that treat and/or prevent Covid-19 caused by SARS-Coronavirus (CoV-2) infections. The replication of the SARS CoV-2 is dependent on the activity of two cysteine proteases, a papain-like protease, PL-pro, and the 3C-like protease known as main protease Mpro or 3CLpro. The shortest and the safest path to clinical use is the repurposing of drugs with binding affinity to PLpro or 3CLpro that have an established safety profile in humans. Several studies have reported crystal structures of SARS-CoV-2 main protease in complex with FDA approved drugs such as those used in treatment of hepatitis C. Here, we report the crystal structure of 3CLpro in complex Vitamin C (L-ascorbate) bound to the protein's active site at 2.5 Angstrom resolution. We also demonstrate that L-ascorbate inhibits the 3CLpro in vitro at mmol/L concentrations. The crystal structure of the Vitamin C 3CLpro complex may aid future studies on the effect of Vitamin C not only on the coronavirus main protease but on related proteases of other infectious viruses. Since ascorbate is readily available, as an over-the-counter vitamin supplement, our results have the potential for development of a global and inexpensive antiviral treatment.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vicky Mody ◽  
Joanna Ho ◽  
Savannah Wills ◽  
Ahmed Mawri ◽  
Latasha Lawson ◽  
...  

AbstractEmerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


Author(s):  
Jainey James ◽  
Divya Jyothi ◽  
Sneh Priya

Aims: The present study aim was to analyse the molecular interactions of the phytoconstituents known for their antiviral activity with the SARS-CoV-2 nonstructural proteins such as main protease (6LU7), Nsp12 polymerase (6M71), and Nsp13 helicase (6JYT). The applied in silico methodologies was molecular docking and pharmacophore modeling using Schrodinger software. Methods: The phytoconstituents were taken from PubChem, and SARS-CoV-2 proteins were downloaded from the protein data bank. The molecular interactions, binding energy, ADMET properties and pharmacophoric features were analysed by glide XP, prime MM-GBSA, qikprop and phase application of Schrodinger respectively. The antiviral activity of the selected phytoconstituents was carried out by PASS predictor, online tools. Results: The docking score analysis showed that quercetin 3-rhamnoside (-8.77 kcal/mol) and quercetin 3-rhamnoside (-7.89 kcal/mol) as excellent products to bind with their respective targets such as 6LU7, 6M71 and 6JYT. The generated pharmacophore hypothesis model validated the docking results, confirming the hydrogen bonding interactions of the amino acids. The PASS online tool predicted constituent's antiviral potentials. Conclusion: The docked phytoconstituents showed excellent interactions with the SARS-CoV-2 proteins, and on the outset, quercetin 3-rhamnoside and quercetin 7-rhamnoside have well-interacted with all the three proteins, and these belong to the plant Houttuynia cordata. The pharmacophore hypothesis has revealed the characteristic features responsible for their interactions, and PASS prediction data has supported their antiviral activities. Thus, these natural compounds could be developed as lead molecules for antiviral treatment against SARS-CoV-2. Further in-vitro and in-vivo studies could be carried out to provide better drug therapy.


2021 ◽  
Vol 21 (4) ◽  
pp. 2075-2089
Author(s):  
Tiago da Silva Arouche ◽  
Anderson Yuri Martins ◽  
Teodorico de Castro Ramalho ◽  
Raul Nunes Carvalho Júnior ◽  
Fabio Luiz Paranhos Costa ◽  
...  

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values −8.727 kcal/mol for Main Protease and −9.784 kcal/mol for protease 3CL, Heparin with values of −7.647 kcal/mol for the Main protease and −7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3193 ◽  
Author(s):  
Olujide O. Olubiyi ◽  
Maryam Olagunju ◽  
Monika Keutmann ◽  
Jennifer Loschwitz ◽  
Birgit Strodel

We use state-of-the-art computer-aided drug design (CADD) techniques to identify prospective inhibitors of the main protease enzyme, 3CLpro of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. From our screening of over one million compounds including approved drugs, investigational drugs, natural products, and organic compounds, and a rescreening protocol incorporating enzyme dynamics via ensemble docking, we have been able to identify a range of prospective 3CLpro inhibitors. Importantly, some of the identified compounds had previously been reported to exhibit inhibitory activities against the 3CLpro enzyme of the closely related SARS-CoV virus. The top-ranking compounds are characterized by the presence of multiple bi- and monocyclic rings, many of them being heterocycles and aromatic, which are flexibly linked allowing the ligands to adapt to the geometry of the 3CLpro substrate site and involve a high amount of functional groups enabling hydrogen bond formation with surrounding amino acid residues, including the catalytic dyad residues H41 and C145. Among the top binding compounds we identified several tyrosine kinase inhibitors, which include a bioflavonoid, the group of natural products that binds best to 3CLpro. Another class of compounds that decently binds to the SARS-CoV-2 main protease are steroid hormones, which thus may be endogenous inhibitors and might provide an explanation for the age-dependent severity of COVID-19. Many of the compounds identified by our work show a considerably stronger binding than found for reference compounds with in vitro demonstrated 3CLpro inhibition and anticoronavirus activity. The compounds determined in this work thus represent a good starting point for the design of inhibitors of SARS-CoV-2 replication.


Author(s):  
Carlos Javier Alméciga-Díaz ◽  
Luisa N. Pimentel-Vera ◽  
Angela Caro ◽  
Angela Mosquera ◽  
Camilo Andrés Castellanos Moreno ◽  
...  

Coronavirus Disease 2019 (Covid-19) was first described in December 2019 in Wuhan, Hubei Province, China; and produced by a novel coronavirus designed as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 has become a pandemic reaching over 1.3 million confirmed cases and 73,000 deaths. Several efforts have been done to identify pharmacological agents that can be used to treat patients and protect healthcare professionals. The sequencing of the virus genome not only has offered the possibility to develop a vaccine, but also to identified and characterize the virus proteins. Among these proteins, main protease (Mpro) has been identified as a potential therapeutic target, since it is essential for the processing other viral proteins. Crystal structures of SARS-CoV-2 Mpro and inhibitors has been described during the last months. To describe additional compounds that can inhibit SARS-CoV-2 Mpro, in this study we performed a molecular docking-based virtual screening against a library of experimental and approved drugs. Top 10 hits included Pictilisib, Nimorazole, Ergoloid mesylates, Lumacaftor, Cefuroxime, Cepharanhine, and Nilotinib. These compounds were predicted to have higher binding affinity for SARS-CoV-2 Mpro than previously reported inhibitors for this protein, suggesting a higher potential to inhibit virus replication. Since the identified drugs have both pre-clinical and clinical information, we consider that these results may contribute to the identification of treatment alternative for Covid-19. Nevertheless, in vitro and in vivo confirmation should be performed before these compounds could be translated to the clinic.


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


2020 ◽  
Author(s):  
Mohamed Fadlalla

<p>SARS CoV 2 has spread worldwide and caused a major outbreak of coronavirus disease 2019 (COVID-19). To date, no licensed drug or a vaccine is available against COVID19.</p><p>Starting from all of the resolved SARS CoV2 crystal structures, this study aims to find inhibitors for all of the SARS CoV2 proteins. To achieve this, I used PocketMatch to test the similarity of approved drugs binding sites against all of the binding sites found on SARS CoV 2 proteins. After that docking was used to confirm the results.</p><p>I found drugs that inhibit the main protease, Nsp12 and Nsp3. The discovered drugs are either in clinical trials (Sildenafil, Lopinavir, Ritonavir) or have in vitro antiviral activity (Nelfinavir, Indinavir, Amprenavir, depiqulinum , Gemcitabine, Raltitrexed, Aprepitant, montelukast, Ouabain, Raloxifene) whether against SARS CoV 2 or other viruses. In addition to this, further analysis of pockets revealed a steroidal pocket that might open the door to hypotheses on why the mortality of men is higher than women.</p><p>Many of the in silico repurposing studies test binding of the compound to the target using docking. The significance of this study adds to the similarity between the drug binding site and the target binding site. This takes into consideration the dynamic behaviour of the pocket after ligand binding.</p><div><br></div>


2020 ◽  
Author(s):  
Kumar Sharp

Abstract SARS-CoV2 main protease is important for viral replication and one of the most potential targets for drug development in this current pandemic. Drug repurposing is a promising field to provide potential short-term acceptable therapy for management of coronavirus till a specific anti-viral for coronavirus is developed. In-silico drug repurposing screening is the current fastest way to repurpose drugs by targeting active sites in fraction of seconds. In this study, SARS-CoV2 main protease is being targeted by 1050 FDA-approved drugs to inhibit its activity thereby interfering with viral replication. Chemotherapeutic drugs and anti-retroviral drugs have shown potential binding as inhibitor. In-vitro and clinical trials required to establish final fact.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alina Shitrit ◽  
Daniel Zaidman ◽  
Ori Kalid ◽  
Itai Bloch ◽  
Dvir Doron ◽  
...  

AbstractThe COVID-19 pandemic caused by the SARS-CoV-2 requires a fast development of antiviral drugs. SARS-CoV-2 viral main protease (Mpro, also called 3C‐like protease, 3CLpro) is a potential target for drug design. Crystal and co-crystal structures of the SARS-CoV-2 Mpro have been solved, enabling the rational design of inhibitory compounds. In this study we analyzed the available SARS-CoV-2 and the highly similar SARS-CoV-1 crystal structures. We identified within the active site of the Mpro, in addition to the inhibitory ligands’ interaction with the catalytic C145, two key H-bond interactions with the conserved H163 and E166 residues. Both H-bond interactions are present in almost all co-crystals and are likely to occur also during the viral polypeptide cleavage process as suggested from docking of the Mpro cleavage recognition sequence. We screened in silico a library of 6900 FDA-approved drugs (ChEMBL) and filtered using these key interactions and selected 29 non-covalent compounds predicted to bind to the protease. Additional screen, using DOCKovalent was carried out on DrugBank library (11,414 experimental and approved drugs) and resulted in 6 covalent compounds. The selected compounds from both screens were tested in vitro by a protease activity inhibition assay. Two compounds showed activity at the 50 µM concentration range. Our analysis and findings can facilitate and focus the development of highly potent inhibitors against SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Aristote Matondo ◽  
Washington Dendera ◽  
Bienfait K. Isamura ◽  
Koto-te-Nyiwa Ngbolua ◽  
Hilaire V.S. Mambo ◽  
...  

The pressing need to find effective drugs against the current deadly COVID-19 disease has recently motivated numerous studies using different approaches to address the problem. One time-saving and less costly strategy is the drug repurposing, which consists in finding new therapeutic uses for approved drugs. Following the same trend, this study has investigated the potential inhibitory activity of 5-FU and its analogues against the SARS-CoV-2 main protease as well as their profile of druggability using molecular docking and ADMET methods. From the calculations performed, four candidates showed promising results with respect to the binding affinity to the target protease, 3CLpro, the therapeutic profile of druggability and safety. Further in-vitro and in-vivo investigations are needed that may clarify their possible mechanism of the pharmacological action to combat COVID-19.


Sign in / Sign up

Export Citation Format

Share Document