scholarly journals Attentional modulation of intrinsic timescales in visual cortex and spatial networks

2021 ◽  
Author(s):  
Roxana Zeraati ◽  
Yan-Liang Shi ◽  
Nicholas A Steinmetz ◽  
Marc A Gieselmann ◽  
Alexander Thiele ◽  
...  

Neural activity fluctuates endogenously on timescales varying across the neocortex. The variation in these intrinsic timescales relates to the functional specialization of cortical areas and their involvement in the temporal integration of information. Yet, it is unknown whether the timescales can adjust rapidly and selectively to the demands of a cognitive task. We measured intrinsic timescales of local spiking activity within columns of area V4 while monkeys performed spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales---fast and slow---and the slow timescale increased when monkeys attended to the receptive fields location. A recurrent network model shows that multiple timescales in local dynamics arise from spatial connectivity mimicking vertical and horizontal interactions in visual cortex and that slow timescales increase with the efficacy of recurrent interactions. Our results reveal that targeted neural populations integrate information over variable timescales following the demands of a cognitive task and propose an underlying network mechanism.

2007 ◽  
Vol 97 (6) ◽  
pp. 3859-3867 ◽  
Author(s):  
Hiroshi Okamoto ◽  
Yoshikazu Isomura ◽  
Masahiko Takada ◽  
Tomoki Fukai

Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. When the variance of background input and the uniform weight of recurrent synapses are adequately tuned, we show that stochastic noise and reverberating synaptic input organize these bimodal changes into a sequence that exhibits graded population activity with a nearly constant slope. To test the validity of the proposed mechanism, we analyzed the graded activity of anterior cingulate cortex neurons in monkeys performing delayed conditional Go/No-go discrimination tasks. The delay-period activities of cingulate neurons exhibited bimodal activity patterns and trial-to-trial variability that are similar to those predicted by the proposed model.


2016 ◽  
Author(s):  
David A. Mély ◽  
Thomas Serre

AsbtractContext is known to affect how a stimulus is perceived. A variety of illusions have been attributed to contextual processing — from orientation tilt effects to chromatic induction phenomena, but their neural underpinnings remain poorly understood. Here, we present a recurrent network model of classical and extra-classical receptive fields that is constrained by the anatomy and physiology of the visual cortex. A key feature of the model is the postulated existence of two spatially disjoint near-vs. far-extra-classical regions with complementary facilitatory and suppressive contributions to the classical receptive field. The model accounts for a variety of contextual illusions, reveals commonalities between seemingly disparate phenomena, and helps organize them into a novel taxonomy. It explains how center-surround interactions may shift from attraction to repulsion in tilt effects, and from contrast to assimilation in induction phenomena. The model further explains enhanced perceptual shifts generated by a class of patterned background stimuli that activate the two opponent extra-classical regions cooperatively. Overall, the ability of the model to account for the variety and complexity of contextual illusions provides computational evidence for a novel canonical circuit that is shared across visual modalities.


Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1191-1196 ◽  
Author(s):  
Xing Chen ◽  
Feng Wang ◽  
Eduardo Fernandez ◽  
Pieter R. Roelfsema

Blindness affects 40 million people across the world. A neuroprosthesis could one day restore functional vision in the blind. We implanted a 1024-channel prosthesis in areas V1 and V4 of the visual cortex of monkeys and used electrical stimulation to elicit percepts of dots of light (called phosphenes) on hundreds of electrodes, the locations of which matched the receptive fields of the stimulated neurons. Activity in area V4 predicted phosphene percepts that were elicited in V1. We simultaneously stimulated multiple electrodes to impose visible patterns composed of a number of phosphenes. The monkeys immediately recognized them as simple shapes, motions, or letters. These results demonstrate the potential of electrical stimulation to restore functional, life-enhancing vision in the blind.


2018 ◽  
Author(s):  
Reza Abbasi-Asl ◽  
Yuansi Chen ◽  
Adam Bloniarz ◽  
Michael Oliver ◽  
Ben D.B. Willmore ◽  
...  

AbstractDeep neural network models have recently been shown to be effective in predicting single neuron responses in primate visual cortex areas V4. Despite their high predictive accuracy, these models are generally difficult to interpret. This limits their applicability in characterizing V4 neuron function. Here, we propose the DeepTune framework as a way to elicit interpretations of deep neural network-based models of single neurons in area V4. V4 is a midtier visual cortical area in the ventral visual pathway. Its functional role is not yet well understood. Using a dataset of recordings of 71 V4 neurons stimulated with thousands of static natural images, we build an ensemble of 18 neural network-based models per neuron that accurately predict its response given a stimulus image. To interpret and visualize these models, we use a stability criterion to form optimal stimuli (DeepTune images) by pooling the 18 models together. These DeepTune images not only confirm previous findings on the presence of diverse shape and texture tuning in area V4, but also provide rich, concrete and naturalistic characterization of receptive fields of individual V4 neurons. The population analysis of DeepTune images for 71 neurons reveals how different types of curvature tuning are distributed in V4. In addition, it also suggests strong suppressive tuning for nearly half of the V4 neurons. Though we focus exclusively on the area V4, the DeepTune framework could be applied more generally to enhance the understanding of other visual cortex areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Wang ◽  
Chuanliang Han ◽  
Tian Wang ◽  
Weifeng Dai ◽  
Yang Li ◽  
...  

AbstractStimulus-dependence of gamma oscillations (GAMMA, 30–90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites’ preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.


1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


2017 ◽  
Vol 28 (01) ◽  
pp. 1750001 ◽  
Author(s):  
José R. A. Torreão

The signal-tuned Gabor approach is based on spatial or spectral Gabor functions whose parameters are determined, respectively, by the Fourier and inverse Fourier transforms of a given “tuning” signal. The sets of spatial and spectral signal-tuned functions, for all possible frequencies and positions, yield exact representations of the tuning signal. Moreover, such functions can be used as kernels for space-frequency transforms which are tuned to the specific features of their inputs, thus allowing analysis with high conjoint spatio-spectral resolution. Based on the signal-tuned Gabor functions and the associated transforms, a plausible model for the receptive fields and responses of cells in the primary visual cortex has been proposed. Here, we present a generalization of the signal-tuned Gabor approach which extends it to the representation and analysis of the tuning signal’s fractional Fourier transform of any order. This significantly broadens the scope and the potential applications of the approach.


1973 ◽  
Vol 63 ◽  
pp. 362-367 ◽  
Author(s):  
Carlos Eduardo Rocha-Miranda ◽  
Rocco A. Bombardieri ◽  
Francisco M. de Monasterio ◽  
Rafael Linden

Sign in / Sign up

Export Citation Format

Share Document