scholarly journals A new type of ERGIC-ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis

2021 ◽  
Author(s):  
Shulin Li ◽  
Rui Yan ◽  
Jialu Xu ◽  
Shiqun Zhao ◽  
Xinyu Ma ◽  
...  

Under stress, the endomembrane system undergoes reorganization to support autophagosome biogenesis, which is a central step in autophagy. How the endomembrane system remodels has been poorly understood. Here we identify a new type of membrane contact formed between the ER-Golgi intermediate compartment (ERGIC) and the ER-exit site (ERES) in the ER-Golgi system, which is essential for promoting autophagosome biogenesis induced by different stress stimuli. The ERGIC-ERES contact is established by the interaction between TMED9 and SEC12 which generates a short distance opposition (as close as 2-5 nm) between the two compartments. The tight membrane contact allows the ERES-located SEC12 to transactivate COPII assembly on the ERGIC. In addition, a portion of SEC12 also relocates to the ERGIC. Through both mechanisms, the ERGIC-ERES contact promotes formation of the ERGIC-derived COPII vesicle, a membrane precursor of the autophagosome. The ERGIC-ERES contact is physically and functionally different from the TFG-mediated ERGIC-ERES adjunction involved in secretory protein transport, and therefore defines a unique endomembrane structure generated upon stress conditions for autophagic membrane formation.

1999 ◽  
Vol 112 (5) ◽  
pp. 589-600 ◽  
Author(s):  
T. Farmaki ◽  
S. Ponnambalam ◽  
A.R. Prescott ◽  
H. Clausen ◽  
B.L. Tang ◽  
...  

Protein transport arrest occurs between the ER and Golgi stack of mitotic animal cells, but the location of this block is unknown. In this report we use the recycling intermediate compartment protein ERGIC 53/p58 and the plasma membrane protein CD8 to establish the site of transport arrest. Recycled ERGIC 53/p58 and newly synthesised CD8 accumulate in ER cisternae but not in COPII-coated export structures or more distal sites. During mitosis the tubulovesicular ER-related export sites were depleted of the COPII component Sec13p, as shown by immunoelectron microscopy, indicating that COPII budding structures are the target for mitotic inhibition. The extent of recycling of Golgi stack residents was also investigated. In this study we used oligosaccharide modifications on CD8 trapped in the ER of mitotic cells as a sensitive assay for recycling of Golgi stack enzymes. We find that modifications conferred by the Golgi stack-resident GalNac transferase do occur on newly synthesised CD8, but these modifications are entirely due to newly synthesised transferase rather than to enzyme recycled from the Golgi stack. Taken together our findings establish for the first time that the site of ER-Golgi transport arrest of mitotic cells is COPII budding structures, and they clearly speak against a role for recycling in partitioning of Golgi stack proteins via translocation to the ER.


2021 ◽  
Author(s):  
Janine McCaughey ◽  
Judith M. Mantell ◽  
Chris R. Neal ◽  
Kate Heesom ◽  
David J. Stephens

AbstractComplex machinery is required to drive secretory cargo export from the endoplasmic reticulum. In vertebrates, this includes transport and Golgi organization protein 1 (TANGO1), encoded by the Mia3 gene. Here, using genome engineering of human cells light microscopy, secretion assays, and proteomics, we show loss of Mia3/TANGO1 results in formation of numerous vesicles and a loss of early secretory pathway integrity. This restricts secretion not only of large proteins like procollagens but of all types of secretory cargo. Our data shows that Mia3/TANGO1 constrains the propensity of COPII to form vesicles promoting instead the formation of the ER-Golgi intermediate compartment. Thus, Mia3/TANGO1 facilities the secretion of complex and high volume cargoes from vertebrate cells.


1993 ◽  
Vol 104 (3) ◽  
pp. 671-683 ◽  
Author(s):  
A. Schweizer ◽  
M. Ericsson ◽  
T. Bachi ◽  
G. Griffiths ◽  
H.P. Hauri

Owing to the lack of appropriate markers the structural organization of the ER-to-Golgi pathway and the dynamics of its membrane elements have been elusive. To elucidate this organization we have taken a monoclonal antibody (mAb) approach. A mAb against a novel 63 kDa membrane protein (p63) was produced that identifies a large tubular network of smooth membranes in the cytoplasm of primate cells. The distribution of p63 overlaps with the ER-Golgi intermediate compartment, defined by a previously described 53 kDa marker protein (here termed ERGIC-53), as visualized by confocal laser scanning immunofluorescence microscopy and immunoelectron microscopy. The p63 compartment mediates protein transport from the ER to Golgi apparatus, as indicated by partial colocalization of p63 and vesicular stomatitis virus G protein in Vero cells cultured at 15 degrees C. Low temperatures and brefeldin A had little effect on the cellular distribution of p63, suggesting that this novel marker is a stably anchored resident protein of these pre-Golgi membranes. p63 and ERGIC-53 were enriched to a similar degree by the same subcellular fractionation procedure. These findings demonstrate an unanticipated complexity of the ER-Golgi interface and suggest that the ER-Golgi intermediate compartment defined by ERGIC-53 may be part of a greater network of smooth membranes.


Author(s):  
C. F. Hickling

The luminiferous organ of the Macrurid fish Cœlorhynchus cœlorhynchus Risso is described in this paper. It consists of a gland, flattened dorsoventrally, placed in the body-wall, just in front of the pelvic fins. The secretory epithelium is thrown into a series of tubules, projecting downwards from the roof of the gland into a system of collecting spaces: the latter are confluent, posteriorly, with a duct which leads backwards, between the pelvic fins, to the anus. Blind pouches, which run upwards for a short distance beside the rectum, arise from the duct at its external opening at the anus.


2000 ◽  
Vol 278 (6) ◽  
pp. C1172-C1182 ◽  
Author(s):  
Yoshio Bando ◽  
Satoshi Ogawa ◽  
Atsushi Yamauchi ◽  
Keisuke Kuwabara ◽  
Kentaro Ozawa ◽  
...  

To assess the participation of the 150-kDa oxygen-regulated protein (ORP150) in protein transport, its function in Madin-Darby canine kidney (MDCK) cells was studied. Exposure of MDCK cells to hypoxia resulted in an increase of ORP150 antigen and increased binding of ORP150 to GP80/clusterin (80-kDa glycoprotein), a natural secretory protein in this cell line. In ORP150 antisense transformant MDCK cells, GP80 was retained within the endoplasmic reticulum after exposure to hypoxia. Metabolic labeling showed the delay of GP80 maturation in antisense transformants in hypoxia, whereas its matured form was detected in wild-type cells, indicating a role of ORP150 in protein transport, especially in hypoxia. The affinity chromatographic analysis of ORP150 suggested its ability to bind to ATP-agarose. Furthermore, the ATP hydrolysis analysis showed that ORP150 can release GP80 at a lower ATP concentration. These data indicate that ORP150 may function as a unique molecular chaperone in renal epithelial cells by facilitating protein transport/maturation in an environment where less ATP is accessible.


2003 ◽  
Vol 163 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Matthew Heidtman ◽  
Catherine Z. Chen ◽  
Ruth N. Collins ◽  
Charles Barlowe

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.


Sign in / Sign up

Export Citation Format

Share Document