scholarly journals A specific set of heterogeneous native interactions yields efficient knotting in protein folding

2021 ◽  
Author(s):  
Joao Especial ◽  
Patricia FN Faisca

Native interactions are crucial for folding, and non-native interactions appear to be critical for efficiently knotting proteins. Therefore, it is important to understand both their roles in the folding of knotted proteins. It has been proposed that non-native interactions drive the correct order of contact formation, which is essential to avoid backtracking and efficiently self-tie. In this study we ask if non-native interactions are strictly necessary to tangle a protein, or if the correct order of contact formation can be assured by a specific set of native, but otherwise heterogeneous, interactions. In order to address this problem we conducted extensive Monte Carlo simulations of lattice models of proteinlike sequences designed to fold into a pre-selected knotted conformation embedding a trefoil knot. We were able to identify a specific set of heterogeneous native interactions that drives efficient knotting, and is able to fold the protein when combined with the remaining native interactions modeled as homogeneous. This specific set of heterogeneous native interactions is strictly enough to efficiently self-tie. A distinctive feature of these native interactions is that they do not backtrack, because their energies ensure the correct order of contact formation. Furthermore, they stabilize a knotted intermediate state, which is en-route to the native structure. Our results thus show that - at least in the context of the adopted model - non-native interactions are not necessary to knot a protein. However, when they are taken into account into protein energetics it is possible to find specific, non-local non-native interactions that operate as a scaffold that assists the knotting step.

1991 ◽  
Vol 05 (13) ◽  
pp. 907-914 ◽  
Author(s):  
RICHARD J. CRESWICK ◽  
CYNTHIA J. SISSON

The properties of the spin-1/2 Heisenberg model on 1, 2, and 3-dimensional lattices are calculated using the Decoupled Cell Method of Homma et al., and these results are compared with high temperature and spin-wave expansions, and with other numerical approaches. The DCM has advantages over other Monte Carlo methods currently in wide use in that the transition probability is positive definite, there is no need to introduce an additional imaginary time, or Trotter, dimension, and the acceptance rate for transitions is comparable to that of classical lattice models. We find very good agreement between the DCM and the high temperature expansion in the temperature region where the high temperature expansion is valid, and reasonably good agreement at low temperatures with spin wave theory. The DCM fails for temperatures T < Tc which decreases with the size of the cell.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 253-256
Author(s):  
F. Gámiz ◽  
J. B. Roldán ◽  
J. A. López-Villanueva

Electron transport properties of strained-Si on relaxed Si1 – xGex channel MOSFETs have been studied using a Monte Carlo simulator. The steady- and non-steady-state high-longitudinal field transport regimes have been described in detail. Electronvelocity- overshoot effects are studied in deep-submicron strained-Si MOSFETs, where they show an improvement over the performance of their normal silicon counterparts. The impact of the Si layer strain on the performance enhancement are described in depth in terms of microscopic magnitudes.


1990 ◽  
Vol 93 (1) ◽  
pp. 837-844 ◽  
Author(s):  
Johannes Reiter ◽  
Thomas Edling ◽  
Tadeusz Pakula

2018 ◽  
Vol 27 (3) ◽  
pp. 1462-1474 ◽  
Author(s):  
Christina Karam ◽  
Keigo Hirakawa

Sign in / Sign up

Export Citation Format

Share Document