scholarly journals Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline

2021 ◽  
Author(s):  
Jaryd R Sullivan ◽  
Andreanne Lupien ◽  
Elias Kalthoff ◽  
Claire Hamela ◽  
Lorne Taylor ◽  
...  

Certain aminoacyl-tRNA synthetases developed a proofreading mechanism to ensure aminoacylation of tRNAs with cognate amino acids. Epetraborole (EPT) was identified as an inhibitor of the leucyl-tRNA synthetase (LeuRS) editing site in Mycobacterium abscessus. EPT displayed enhanced activity against M. abscessus over Mycobacterium tuberculosis. Crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar Kd. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed the non-proteinogenic amino acid norvaline, leucine residues in proteins were replaced by norvaline, inducing expression of GroEL chaperonins and Clp proteases. In vitro data revealed that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. The combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection.

2021 ◽  
Vol 17 (10) ◽  
pp. e1009965
Author(s):  
Jaryd R. Sullivan ◽  
Andréanne Lupien ◽  
Elias Kalthoff ◽  
Claire Hamela ◽  
Lorne Taylor ◽  
...  

Mycobacterium abscessus is the most common rapidly growing non-tuberculous mycobacteria to cause pulmonary disease in patients with impaired lung function such as cystic fibrosis. M. abscessus displays high intrinsic resistance to common antibiotics and inducible resistance to macrolides like clarithromycin. As such, M. abscessus is clinically resistant to the entire regimen of front-line M. tuberculosis drugs, and treatment with antibiotics that do inhibit M. abscessus in the lab results in cure rates of 50% or less. Here, we identified epetraborole (EPT) from the MMV pandemic response box as an inhibitor against the essential protein leucyl-tRNA synthetase (LeuRS) in M. abscessus. EPT protected zebrafish from lethal M. abscessus infection and did not induce self-resistance nor against clarithromycin. Contrary to most antimycobacterials, the whole-cell activity of EPT was greater against M. abscessus than M. tuberculosis, but crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar residues and dissociation constants. Since EPT-resistant M. abscessus mutants lost LeuRS editing activity, these mutants became susceptible to misaminoacylation with leucine mimics like the non-proteinogenic amino acid norvaline. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed norvaline, leucine residues in proteins were replaced by norvaline, inducing the unfolded protein response with temporal changes in expression of GroEL chaperonins and Clp proteases. This supports our in vitro data that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. Furthermore, the combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection. Our results emphasize the effectiveness of EPT against the clinically relevant cystic fibrosis pathogen M. abscessus, and these findings also suggest norvaline adjunct therapy with EPT could be beneficial for M. abscessus and other mycobacterial infections like tuberculosis.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


1970 ◽  
Vol 131 (6) ◽  
pp. 1261-1270 ◽  
Author(s):  
George C. Saunders ◽  
Douglas Swartzendruber

Cells capable of reacting with sheep erythrocyte (SRBC) antigen to maturate and produce hemolysin appear simultaneously in the bone marrow and spleen of 1-day old Swiss-Webster mice. However, hemolysin-producing cell clones (HPCC) do not result. Complete functional precursor units generally appear in the spleens of mice older than 3 days. In vivo and in vitro data correlate well in this regard. Complete precursor units are not seen in the bone marrow and only very rarely in the thymus. The efficiency of precursor units of neonatal mice when they become functional approximates that of the mature animal when based on the doubling time of plaque-forming cells (PFC). Possible explanations of the initial appearance of incomplete precursor units have been discussed.


2003 ◽  
Vol 59 (5-6) ◽  
pp. 429-442 ◽  
Author(s):  
Xue-Qing Li ◽  
Anders Bj�rkman ◽  
Tommy B. Andersson ◽  
Lars L. Gustafsson ◽  
Collen M. Masimirembwa

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 473 ◽  
Author(s):  
Takuya Umehara ◽  
Saori Kosono ◽  
Dieter Söll ◽  
Koji Tamura

Protein lysine acetylation is a widely conserved posttranslational modification in all three domains of life. Lysine acetylation frequently occurs in aminoacyl-tRNA synthetases (aaRSs) from many organisms. In this study, we determined the impact of the naturally occurring acetylation at lysine-73 (K73) in Escherichia coli class II alanyl-tRNA synthetase (AlaRS) on its alanylation activity. We prepared an AlaRS K73Ac variant in which Nε-acetyl-l-lysine was incorporated at position 73 using an expanded genetic code system in E. coli. The AlaRS K73Ac variant showed low activity compared to the AlaRS wild type (WT). Nicotinamide treatment or CobB-deletion in an E. coli led to elevated acetylation levels of AlaRS K73Ac and strongly reduced alanylation activities. We assumed that alanylation by AlaRS is affected by K73 acetylation, and the modification is sensitive to CobB deacetylase in vivo. We also showed that E. coli expresses two CobB isoforms (CobB-L and CobB-S) in vivo. CobB-S displayed the deacetylase activity of the AlaRS K73Ac variant in vitro. Our results imply a potential regulatory role for lysine acetylation in controlling the activity of aaRSs and protein synthesis.


2002 ◽  
Vol 46 (9) ◽  
pp. 3039-3041 ◽  
Author(s):  
Sofia Perea ◽  
Gloria Gonzalez ◽  
Annette W. Fothergill ◽  
William R. Kirkpatrick ◽  
Michael G. Rinaldi ◽  
...  

ABSTRACT The interaction between caspofungin acetate and voriconazole was studied in vitro by using 48 clinical Aspergillus spp. isolates obtained from patients with invasive aspergillosis. MICs were determined by the NCCLS broth microdilution method. Synergy, defined as a fractional inhibitory concentration (FIC) index of <1, was detected in 87.5% of the interactions; an additive effect, defined as an FIC index of 1.0, was observed in 4.2% of the interactions; and a subadditive effect, defined as an FIC index of 1.0 to 2.0, was found in 8.3% of the interactions. No antagonism was observed. Animal models are required to validate the in vivo significance of these in vitro data presented for the combination of caspofungin and voriconazole.


2016 ◽  
Vol 77 ◽  
pp. 54-64 ◽  
Author(s):  
Louis Anthony (Tony) Cox ◽  
Douglas A. Popken ◽  
A. Michael Kaplan ◽  
Laura M. Plunkett ◽  
Richard A. Becker

Sign in / Sign up

Export Citation Format

Share Document