scholarly journals PRDM9 losses in vertebrates are coupled to the loss of at least three other meiotic genes

2021 ◽  
Author(s):  
Maria Izabel Alves Cavassim ◽  
Zachary Baker ◽  
Carla Hoge ◽  
Mikkel Schierup ◽  
Molly Schumer ◽  
...  

In most mammals and likely throughout vertebrates, the gene PRDM9 specifies the locations of meiotic double strand breaks; in mice and humans at least, it also aids in their repair. For both roles, many of the molecular partners remain unknown. Here, we take a phylogenetic approach to identify genes that may be interacting with PRDM9, by leveraging the fact that PRDM9 arose before the origin of vertebrates, but was lost many times, either partially or entirely--and with it, its role in recombination. As a first step, we characterize PRDM9 domain composition across 379 vertebrate species, inferring at least eight independent losses. We then use the interdigitation of PRDM9 orthologs across vertebrates to test whether it co-evolved with any of 241 candidate genes co-expressed with PRDM9 in mice or associated with recombination phenotypes in mammals. Accounting for the phylogenetic relationship among species, we identify three genes whose presence and absence is unexpectedly coincident with that of PRDM9: ZCWPW1, which was recently shown to be recruited to sites of PRDM9 binding and to facilitate double strand break repair; TEX15, which has also been suggested to play a role in repair; and ZCWPW2, the paralog of ZCWPW1. ZCWPW2 is expected to be recruited to sites of PRDM9 binding as well; its tight coevolution with PRDM9 across vertebrates suggests that it is a key interactor, with a role either in recruiting the recombination machinery or in double strand break repair.

2010 ◽  
Vol 192 (19) ◽  
pp. 4954-4962 ◽  
Author(s):  
Michael L. Rolfsmeier ◽  
Marian F. Laughery ◽  
Cynthia A. Haseltine

ABSTRACT DNA damage repair mechanisms have been most thoroughly explored in the eubacterial and eukaryotic branches of life. The methods by which members of the archaeal branch repair DNA are significantly less well understood but have been gaining increasing attention. In particular, the approaches employed by hyperthermophilic archaea have been a general source of interest, since these organisms thrive under conditions that likely lead to constant chromosomal damage. In this work we have characterized the responses of three Sulfolobus solfataricus strains to UV-C irradiation, which often results in double-strand break formation. We examined S. solfataricus strain P2 obtained from two different sources and S. solfataricus strain 98/2, a popular strain for site-directed mutation by homologous recombination. Cellular recovery, as determined by survival curves and the ability to return to growth after irradiation, was found to be strain specific and differed depending on the dose applied. Chromosomal damage was directly visualized using pulsed-field gel electrophoresis and demonstrated repair rate variations among the strains following UV-C irradiation-induced double-strand breaks. Several genes involved in double-strand break repair were found to be significantly upregulated after UV-C irradiation. Transcript abundance levels and temporal expression patterns for double-strand break repair genes were also distinct for each strain, indicating that these Sulfolobus solfataricus strains have differential responses to UV-C-induced DNA double-strand break damage.


2015 ◽  
Author(s):  
Askar Yimit ◽  
TaeHyung Kim ◽  
Ranjith Anand ◽  
Sarah Meister ◽  
Jiongwen Ou ◽  
...  

Double-strand DNA breaks occur upon exposure of cells to agents such as ionizing radiation and ultraviolet light or indirectly through replication fork collapse at DNA damage sites. If left unrepaired double-strand breaks can cause genome instability and cell death. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination re-localize into discrete nuclear foci. We identified 29 proteins that co-localize with the recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase Mph1 is absent. Mte1 and Mph1 form a complex, and are recruited to double-strand breaks in vivo in a mutually dependent manner. Mte1 is important for resolution of Rad52 foci during double-strand break repair, and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.


1998 ◽  
Vol 180 (23) ◽  
pp. 6193-6202 ◽  
Author(s):  
Ying-Ta Lai ◽  
Warren Masker

ABSTRACT An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to study the mechanism of double-strand break repair. Double-strand breaks were placed in T7 genomes by cutting with a restriction endonuclease which recognizes a unique site in the T7 genome. These molecules were allowed to repair under conditions where the double-strand break could be healed by (i) direct joining of the two partial genomes resulting from the break, (ii) annealing of complementary versions of 17-bp sequences repeated on either side of the break, or (iii) recombination with intact T7 DNA molecules. The data show that while direct joining and single-strand annealing contributed to repair of double-strand breaks, these mechanisms made only minor contributions. The efficiency of repair was greatly enhanced when DNA molecules that bridge the region of the double-strand break (referred to as donor DNA) were provided in the reaction mixtures. Moreover, in the presence of the donor DNA most of the repaired molecules acquired genetic markers from the donor DNA, implying that recombination between the DNA molecules was instrumental in repairing the break. Double-strand break repair in this system is highly efficient, with more than 50% of the broken molecules being repaired within 30 min under some experimental conditions. Gaps of 1,600 nucleotides were repaired nearly as well as simple double-strand breaks. Perfect homology between the DNA sequence near the break site and the donor DNA resulted in minor (twofold) improvement in the efficiency of repair. However, double-strand break repair was still highly efficient when there were inhomogeneities between the ends created by the double-strand break and the T7 genome or between the ends of the donor DNA molecules and the genome. The distance between the double-strand break and the ends of the donor DNA molecule was critical to the repair efficiency. The data argue that ends of DNA molecules formed by double-strand breaks are typically digested by between 150 and 500 nucleotides to form a gap that is subsequently repaired by recombination with other DNA molecules present in the same reaction mixture or infected cell.


2002 ◽  
Vol 66 (4) ◽  
pp. 630-670 ◽  
Author(s):  
Lorraine S. Symington

SUMMARY The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.


2020 ◽  
Vol 48 (9) ◽  
pp. 4915-4927 ◽  
Author(s):  
Ignacio Alonso-de Vega ◽  
Maria Cristina Paz-Cabrera ◽  
Magdalena B Rother ◽  
Wouter W Wiegant ◽  
Cintia Checa-Rodríguez ◽  
...  

Abstract Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.


2001 ◽  
Vol 183 (6) ◽  
pp. 1862-1869 ◽  
Author(s):  
Man Yu ◽  
Warren Masker

ABSTRACT An in vitro system based on Escherichia coliinfected with bacteriophage T7 was used to test for involvement of host and phage recombination proteins in the repair of double strand breaks in the T7 genome. Double strand breaks were placed in a uniqueXhoI site located approximately 17% from the left end of the T7 genome. In one assay, repair of these breaks was followed by packaging DNA recovered from repair reactions and determining the yield of infective phage. In a second assay, the product of the reactions was visualized after electrophoresis to estimate the extent to which the double strand breaks had been closed. Earlier work demonstrated that in this system double strand break repair takes place via incorporation of a patch of DNA into a gap formed at the break site. In the present study, it was found that extracts prepared from uninfected E. coli were unable to repair broken T7 genomes in this in vitro system, thus implying that phage rather than host enzymes are the primary participants in the predominant repair mechanism. Extracts prepared from an E. coli recA mutant were as capable of double strand break repair as extracts from a wild-type host, arguing that the E. coli recombinase is not essential to the recombinational events required for double strand break repair. In T7 strand exchange during recombination is mediated by the combined action of the helicase encoded by gene 4 and the annealing function of the gene 2.5 single strand binding protein. Although a deficiency in the gene 2.5 protein blocked double strand break repair, a gene 4 deficiency had no effect. This argues that a strand transfer step is not required during recombinational repair of double strand breaks in T7 but that the ability of the gene 2.5 protein to facilitate annealing of complementary single strands of DNA is critical to repair of double strand breaks in T7.


Nano LIFE ◽  
2010 ◽  
Vol 01 (01n02) ◽  
pp. 1-16 ◽  
Author(s):  
D. JOSEPH JERRY ◽  
NICHOLAS B. GRINER ◽  
LUWEI TAO

Heritable breast cancer syndromes have identified the recognition and processing of DNA double strand breaks as a fundamental vulnerability in the breast epithelium. The role of homology-directed DNA repair is particularly prominent, indicating that this repair pathway is rate-limiting. Although the activities of the tumor suppressor genes underlying heritable breast cancer act in a common pathway of DNA double strand break repair, the specific lesions result in surprisingly different patterns of biomarkers in the breast cancers, suggesting that they arise from different cell types that include the luminal, basal and progenitor cells within the breast epithelium. Therefore, each cell type appears to have distinct underlying vulnerabilities in repair of DNA double strand breaks. While the heterogeneity of targets poses a challenge to develop specific therapies, these pathways also render tumor cells sensitive to drugs targeting double strand break repair pathways offering new options for therapies. As double strand break repair is a common pathway underlying breast cancer risk, therapies that enhance the proficiency of this pathway offer a strategy for chemoprevention.


Sign in / Sign up

Export Citation Format

Share Document