Effects of hyperthermia on the repair of radiation-induced DNA single-and double-strand breaks in DNA double-strand break repair-deficient and repair-proficient cell lines

1990 ◽  
Vol 6 (4) ◽  
pp. 813-833 ◽  
Author(s):  
G. Iliakis ◽  
R. Seaner ◽  
R. Okayasu
Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1657 ◽  
Author(s):  
Terrence Hanscom ◽  
Mitch McVey

Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.


2010 ◽  
Vol 192 (19) ◽  
pp. 4954-4962 ◽  
Author(s):  
Michael L. Rolfsmeier ◽  
Marian F. Laughery ◽  
Cynthia A. Haseltine

ABSTRACT DNA damage repair mechanisms have been most thoroughly explored in the eubacterial and eukaryotic branches of life. The methods by which members of the archaeal branch repair DNA are significantly less well understood but have been gaining increasing attention. In particular, the approaches employed by hyperthermophilic archaea have been a general source of interest, since these organisms thrive under conditions that likely lead to constant chromosomal damage. In this work we have characterized the responses of three Sulfolobus solfataricus strains to UV-C irradiation, which often results in double-strand break formation. We examined S. solfataricus strain P2 obtained from two different sources and S. solfataricus strain 98/2, a popular strain for site-directed mutation by homologous recombination. Cellular recovery, as determined by survival curves and the ability to return to growth after irradiation, was found to be strain specific and differed depending on the dose applied. Chromosomal damage was directly visualized using pulsed-field gel electrophoresis and demonstrated repair rate variations among the strains following UV-C irradiation-induced double-strand breaks. Several genes involved in double-strand break repair were found to be significantly upregulated after UV-C irradiation. Transcript abundance levels and temporal expression patterns for double-strand break repair genes were also distinct for each strain, indicating that these Sulfolobus solfataricus strains have differential responses to UV-C-induced DNA double-strand break damage.


Sign in / Sign up

Export Citation Format

Share Document