scholarly journals Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film

2021 ◽  
Author(s):  
Julia Berezutskaya ◽  
Mariska J. Vansteensel ◽  
Erik J. Aarnoutse ◽  
Zachary V. Freudenburg ◽  
Giovanni Piantoni ◽  
...  

Intracranial human recordings are a valuable and rare resource that the whole neuroscience community can benefit from. Making such data available to the neuroscience community not only helps tackle the reproducibility issues in science, it also helps make more use of this valuable data. The latter is especially true for data collected using naturalistic tasks. Here, we describe a dataset collected from a large group of human subjects while they watched a short audiovisual film. The dataset is characterized by several unique features. First, it combines a large amount of intracranial data from 51 intracranial electroencephalography (iEEG) participants, who all did the same task. Second, the intracranial data are accompanied by fMRI recordings acquired for the same task in 30 functional magnetic resonance imaging (fMRI) participants. Third, the data were acquired using a rich audiovisual stimulus, for which we provide detailed speech and video annotations. This multimodal dataset can be used to address questions about neural mechanisms of multimodal perception and language comprehension as well as the nature of the neural signal acquired during the same task across brain recording modalities.

1999 ◽  
Vol 273 (3) ◽  
pp. 195-199 ◽  
Author(s):  
Pierre Burbaud ◽  
Olivier Camus ◽  
D. Guehl ◽  
Bernard Bioulac ◽  
Jean-Marie Caillé ◽  
...  

2009 ◽  
Vol 364 (1522) ◽  
pp. 1407-1416 ◽  
Author(s):  
Katherine Woollett ◽  
Hugo J. Spiers ◽  
Eleanor A. Maguire

While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.


2020 ◽  
Author(s):  
Chisa Ota ◽  
Tamami Nakano

AbstractBeauty filters, while often employed for retouching photos to appear more attractive on social media, when used in excess cause images to give a distorted impression. The neural mechanisms underlying this change in facial attractiveness according to beauty retouching level remain unknown. The present study used functional magnetic resonance imaging in women as they viewed photos of their own face or unknown faces that had been retouched at three levels: no, mild, and extreme. The activity in the nucleus accumbens (NA) exhibited a positive correlation with facial attractiveness, whereas amygdala activity showed a negative correlation with attractiveness. Even though the participants rated others’ faces as more attractive than their own, the NA showed increased activity only for their mildly retouched own face and the amygdala exhibited greater activation in the others’ faces condition than the own face condition. Moreover, amygdala activity was greater for extremely retouched faces than for unretouched or mildly retouched faces for both conditions. Frontotemporal and cortical midline areas showed greater activation for one’s own than others’ faces, but such self-related activation was absent when extremely retouched. These results suggest that neural activity dynamically switches between the NA and amygdala according to perceived attractiveness of one’s face.


2019 ◽  
Author(s):  
Linda Henriksson ◽  
Marieke Mur ◽  
Nikolaus Kriegeskorte

SUMMARYSuccessful visual navigation requires a sense of the geometry of the local environment. How do our brains extract this information from retinal images? Here we visually presented scenes with all possible combinations of five scene-bounding elements (left, right and back wall, ceiling, floor) to human subjects during functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). The fMRI response patterns in the scene-responsive occipital place area (OPA) reflected scene layout with invariance to changes in surface texture. This result contrasted sharply with the primary visual cortex (V1), which reflected low-level image features of the stimuli, and parahippocampal place area (PPA), which showed better texture than layout decoding. MEG indicated that the texture-invariant scene-layout representation is computed from visual input within ~100 ms, suggesting a rapid computational mechanism. Taken together, these results suggest that the cortical representation underlying our instant sense of the environmental geometry is located in OPA.


2012 ◽  
Vol 367 (1591) ◽  
pp. 965-976 ◽  
Author(s):  
Anahita Basirat ◽  
Jean-Luc Schwartz ◽  
Marc Sato

The verbal transformation effect (VTE) refers to perceptual switches while listening to a speech sound repeated rapidly and continuously. It is a specific case of perceptual multistability providing a rich paradigm for studying the processes underlying the perceptual organization of speech. While the VTE has been mainly considered as a purely auditory effect, this paper presents a review of recent behavioural and neuroimaging studies investigating the role of perceptuo-motor interactions in the effect. Behavioural data show that articulatory constraints and visual information from the speaker's articulatory gestures can influence verbal transformations. In line with these data, functional magnetic resonance imaging and intracranial electroencephalography studies demonstrate that articulatory-based representations play a key role in the emergence and the stabilization of speech percepts during a verbal transformation task. Overall, these results suggest that perceptuo (multisensory)-motor processes are involved in the perceptual organization of speech and the formation of speech perceptual objects.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gowrishankar Ganesh ◽  
Takehiro Minamoto ◽  
Masahiko Haruno

Abstract Performance anxiety can profoundly affect motor performance, even in experts such as professional athletes and musicians. Previously, the neural mechanisms underlying anxiety-induced performance deterioration have predominantly been investigated for individual one-shot actions. Sports and music, however, are characterized by action sequences, where many individual actions are assembled to develop a performance. Here, utilizing a novel differential sequential motor learning paradigm, we first show that performance at the junctions between pre-learnt action sequences is particularly prone to anxiety. Next, utilizing functional magnetic resonance imaging (fMRI), we reveal that performance deterioration at the junctions is parametrically correlated with activity in the dorsal anterior cingulate cortex (dACC). Finally, we show that 1 Hz repetitive transcranial magnetic stimulation of the dACC attenuates the performance deterioration at the junctions. These results demonstrate causality between dACC activity and impairment of sequential motor performance due to anxiety, and suggest new intervention techniques against the deterioration.


Sign in / Sign up

Export Citation Format

Share Document