scholarly journals WDR31 is a novel ciliopathy protein displaying functional redundancy with GTPase-activating proteins ELMOD and RP2 in recruiting BBSome to cilium

2021 ◽  
Author(s):  
Sebiha Cevik ◽  
Lama Alabdi ◽  
Xiaoyu Peng ◽  
Tina Beyer ◽  
Atiyye Zorluer ◽  
...  

The term ciliopathy refers to a group of over 35 rare disorders characterized by defective cilia and many overlapping clinical features, such as hydrocephalus, cerebellar vermis hypoplasia, polydactyly, and retinopathy. Even though many genes have been implicated in ciliopathies, the genetic pathogenesis in certain cases remains still undisclosed. Here, we identified a homozygous truncating variant in WDR31 in a patient with a typical ciliopathy phenotype encompassing congenital hydrocephalus, polydactyly and renal agenesis. WDR31 is an evolutionarily conserved protein that localizes to the cilium and cilia-related compartment. Analysis from zebrafish supports the role of WDR31 in regulating the cilia morphology. The CRISPR/Cas9 knock-in (p.Arg261del) C. elegans model of the patient variant (p.Arg268*) reproduced several cilia-related defects observed in wdr-31 null mutants. Mechanistic analysis from C. elegans revealed that WDR-31 functions redundantly with ELDM-1 (ELMOD protein) and RPI-2 (RP2) to regulate the IFT trafficking through controlling the cilia entry of the BBSome. This work revealed WDR31 as a new ciliopathy protein that regulates IFT and BBSome trafficking.

2021 ◽  
Author(s):  
Sebiha Cevik ◽  
Lama Alabdi ◽  
Xiaoyu Peng ◽  
Tina Beyer ◽  
Atiyye Zorluer ◽  
...  

Abstract The term “ciliopathy” refers to a group of over 35 rare disorders characterized by defective cilia and many overlapping clinical features, such as hydrocephalus, cerebellar vermis hypoplasia, polydactyly, and retinopathy. Even though many genes have been implicated in ciliopathies, the genetic pathogenesis in certain cases remains still undisclosed. Here, we identified a homozygous truncating variant in WDR31 in a patient with a typical ciliopathy phenotype encompassing congenital hydrocephalus, polydactyly, and renal agenesis. WDR31 is an evolutionarily conserved protein that localizes to the cilium and cilia-related compartment. Analysis from zebrafish supports the role of WDR31 in regulating the cilia morphology. The CRISPR/Cas9 knock-in (p.Arg261del) C. elegans model of the patient variant (p.Arg268*) reproduced several cilia-related defects observed in wdr-31 null mutants. Mechanistic analysis from C. elegans revealed that WDR-31 functions redundantly with ELDM-1 (ELMOD protein) and RPI-2 (RP2) to regulate the IFT trafficking through controlling the cilia entry of the BBSome. This work revealed WDR31 as a new ciliopathy protein that regulates IFT and BBSome trafficking.


2001 ◽  
Vol 114 (17) ◽  
pp. 3103-3114 ◽  
Author(s):  
Frédéric Scaërou ◽  
Daniel A. Starr ◽  
Fabio Piano ◽  
Ophelia Papoulas ◽  
Roger E. Karess ◽  
...  

The zeste-white 10 (zw10) and rough deal (rod) genes of Drosophila both encode kinetochore components, and mutations in either gene greatly increase the missegregation of sister chromatids during mitosis. Here, we present genetic, cytological and biochemical evidence for a close, evolutionarily conserved relationship between the ROD and ZW10 proteins. We show that the phenotypes caused by disruption of either gene’s function are similar in Drosophila and in C. elegans. No additive effects are observed in zw10; rod double null mutants. In flies, the two proteins always colocalize and, moreover, require each other for their recruitment to the mitotic apparatus. The human ROD and ZW10 homologs also colocalize on HeLa cell kinetochores or kinetochore microtubules throughout most but not all of mitosis. Finally, we show that in both Drosophila and human cells, ROD and ZW10 are in fact physically associated, and in Drosophila these proteins are together constituents of a large (700-900 kDa), soluble macromolecular complex.


Physiology ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Heather A. Drummond ◽  
Samira C. Grifoni ◽  
Nikki L. Jernigan

Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans ( C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Nicolas Joly ◽  
Eva Beaumale ◽  
Lucie Van Hove ◽  
Lisa Martino ◽  
Lionel Pintard

The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.


2019 ◽  
Author(s):  
Filip Kaššák ◽  
Ahmed A Chughtai ◽  
Marta Kostrouchová

Neutral lipids and namely triacyl-glycerols (TAGs) are the prevalent excess energy storage molecules in all eukaryotic organisms. They are universally organized in active cytoplasmic organelles called lipid droplets (LDs) and their breakdown is performed and regulated in an evolutionarily conserved manner. In mammals, two distinct but inter-connected pathways are believed to mediate this catabolism: conventional cytoplasmic lipolysis with effector neutral lipases; and lipophagy, a specific kind of autophagy exploiting lysosomal acidic lipases. Central molecules in this regulation are LD-resident proteins, perilipins (PLINs). Our recent discovery of a sole PLIN orthologue in C. elegans offers a unique opportunity to study these regulatory pathways, provided that the interactive mechanisms are orthologous. To determine this, we employed classical genetics with genome editing tools and in vivo microscopy to provide three lines of evidence demonstrating the conserved role of the C. elegans perilipin. Firstly, we proved the common presence of a standard lipolytic apparatus on LDs. Next, we ascertained a functional connection between nematode PLIN-1 and the effector enzyme, hormone-sensitive lipase (HOSL-1). Finally, we identified lipophagy as a secondary lipolytic pathway, which is consistent with the mammalian model. Our data provide not only a proof of concept but also suggests interesting implications by questioning the physiological role of lipophagy in lipolysis.


2019 ◽  
Author(s):  
Filip Kaššák ◽  
Ahmed A Chughtai ◽  
Marta Kostrouchová

Neutral lipids and namely triacyl-glycerols (TAGs) are the prevalent excess energy storage molecules in all eukaryotic organisms. They are universally organized in active cytoplasmic organelles called lipid droplets (LDs) and their breakdown is performed and regulated in an evolutionarily conserved manner. In mammals, two distinct but inter-connected pathways are believed to mediate this catabolism: conventional cytoplasmic lipolysis with effector neutral lipases; and lipophagy, a specific kind of autophagy exploiting lysosomal acidic lipases. Central molecules in this regulation are LD-resident proteins, perilipins (PLINs). Our recent discovery of a sole PLIN orthologue in C. elegans offers a unique opportunity to study these regulatory pathways, provided that the interactive mechanisms are orthologous. To determine this, we employed classical genetics with genome editing tools and in vivo microscopy to provide three lines of evidence demonstrating the conserved role of the C. elegans perilipin. Firstly, we proved the common presence of a standard lipolytic apparatus on LDs. Next, we ascertained a functional connection between nematode PLIN-1 and the effector enzyme, hormone-sensitive lipase (HOSL-1). Finally, we identified lipophagy as a secondary lipolytic pathway, which is consistent with the mammalian model. Our data provide not only a proof of concept but also suggests interesting implications by questioning the physiological role of lipophagy in lipolysis.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Romeo Papazyan ◽  
Ekaterina Voronina ◽  
Jessica R Chapman ◽  
Teresa R Luperchio ◽  
Tonya M Gilbert ◽  
...  

Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.


Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3095-3104 ◽  
Author(s):  
Jae Young Kwon ◽  
Junho Lee

Transcription mediators are known to be required for regulated transcription in yeast and higher eukaryotes. However, little is known about the specific roles of mediators in vivo during development. In this report, we have characterized the biological functions of the C. elegans genemed-6, which is the homolog of the yeast mediator med-6. We first identified a genetic mutation in the med-6 gene by comparing genetic and physical maps and determining the molecular lesion. Next, we demonstrated that med-6 plays an important role in metazoan development by regulating the transcription of genes in evolutionarily conserved signaling pathways. We showed that med-6 is involved in the transcription of genes of the Ras pathway by showing that med-6 RNAi suppressed phenotypes associated with gain-of-function alleles oflet-23 and let-60, and enhanced those associated with a reduction-of-function allele of lin-3. We also found thatmed-6 is involved in male ray development, which is partly mediated by the Wnt pathway. As MED-6 is universally conserved, including in yeast, and the mediator-related proteins that function in vulval and male ray development are metazoan specific, our results suggest the role of med-6 as a point of convergence where signals transmitted through metazoan-specific mediator-related proteins meet. In addition, RNAi experiments inrde-1 background showed that maternal and zygotic med-6activities have distinct roles in development.


2021 ◽  
Author(s):  
Isabelle Schiffer ◽  
Birgit Gerisch ◽  
Kazuto Kawamura ◽  
Raymond Laboy ◽  
Jennifer Hewitt ◽  
...  

AbstractMuscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also highly plastic, and remodelled in response to stress, growth, neural and metabolic inputs. The evolutionarily conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle biology during development, but whether it plays a role during ageing is unknown. Here we investigated the role of C. elegans miR-1 in muscle function in response to proteostatic stress during adulthood. mir-1 deletion results in improved mid-life muscle motility, pharyngeal pumping, and organismal longevity under conditions of polyglutamine repeat proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6VIA as a direct target downregulated via its 3’UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. In summary, our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during ageing.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Sign in / Sign up

Export Citation Format

Share Document