scholarly journals Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion function for retrotranslocation of ER multi-spanning membrane substrates

2021 ◽  
Author(s):  
Anahita Nejatfard ◽  
Nicholas Wauer ◽  
Satarupa Bhaduri ◽  
Adam Conn ◽  
Saroj Gourkanti ◽  
...  

Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane where they are correctly folded, assembled, and then delivered to their final cellular destinations. In order to prevent the accumulation of misfolded membrane proteins, ER associated degradation (ERAD) moves these clients from the ER membrane to the cytosol; a process known as retrotranslocation. Our recent work in S. cerevisiae has revealed a derlin rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study we sought to understand the mechanism associated with Dfm1's actions and found that Dfm1's conserved rhomboid residues are critical for membrane protein retrotranslocation. Specifically, we identified several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 has retained the lipid thinning functions of its rhomboid protease predecessors to facilitate in the removal of ER membrane substrates. We find this substrate engagement and lipid thinning feature is conserved in its human homolog, Derlin-1. Utilizing interaction studies and molecular dynamics simulations, this work reveals that rhomboid pseudoprotease derlins employ novel mechanisms of substrate engagement and lipid thinning for catalyzing extraction of multi-spanning membrane substrates.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
George Khelashvili ◽  
Neha Chauhan ◽  
Kalpana Pandey ◽  
David Eliezer ◽  
Anant K Menon

Previously we identified Lam/GramD1 proteins, a family of endoplasmic reticulum membrane proteins with sterol-binding StARkin domains that are implicated in intracellular sterol homeostasis. Here, we show how these proteins exchange sterol molecules with membranes. An aperture at one end of the StARkin domain enables sterol to enter/exit the binding pocket. Strikingly, the wall of the pocket is longitudinally fractured, exposing bound sterol to solvent. Large-scale atomistic molecular dynamics simulations reveal that sterol egress involves widening of the fracture, penetration of water into the cavity, and consequent destabilization of the bound sterol. The simulations identify polar residues along the fracture that are important for sterol release. Their replacement with alanine affects the ability of the StARkin domain to bind sterol, catalyze inter-vesicular sterol exchange and alleviate the nystatin-sensitivity of lam2Δ yeast cells. These data suggest an unprecedented, water-controlled mechanism of sterol discharge from a StARkin domain.


Sign in / Sign up

Export Citation Format

Share Document